• Title/Summary/Keyword: first arrivals of P- and S-waves

Search Result 7, Processing Time 0.022 seconds

Comparison of shear-wave sections from inverting refracted shear waves and surface wave dispersions (횡파단면 작성을 위한 굴절된 횡파와 표면파 자료 역산 결과 비교)

  • Lee, Chang, Min;Kim, Ki-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.287-291
    • /
    • 2005
  • Two-dimensional velocity tomograms of P- and S-waves were obtained by inverting traveltimes of first arrivals. The two sections of shear-wave velocity show similar features as a whole, with smaller values on the section from surface wave dispersions. Difficulties in picking SH-wave phases due to noise and later arrivals than P waves and PS converted waves are experienced. In addition, a flat layer model based on the surface wave inversion prohibits applications of the method where sgear wave velocities vary strongly in the lateral direction.

  • PDF

Comparison of Shear-wave Velocity Sections from Inverting SH-wave Traveltimes of First Arrivals and Surface Wave Dispersion Curves (SH파 초동주시 역산과 표면파 분산곡선 역산으로부터 구한 횡파속도 단면 비교)

  • Lee, Chang-Min;Kim, Ki-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2005
  • Two-dimensional S-wave velocity sections from SH-wave refraction tomography and surface wave dispersions were obtained by inverting traveltimes of first arrivals and surface wave dispersions, respectively. For the purpose of comparison, a P-wave velocity tomogram was also obtained from a P-wave refraction profiling. P and Rayleigh waves generated by vertical blows on a plate with a sledgehammer were received by 100- and 4.5-Hz geophones, respectively. SH-waves generated by horizontal blows on both sides of a 50 kg timber were received by 8 Hz horizontal geophones. The shear-wave signals were enhanced subtracting data of left-side blows from ones of the right-side blows. Shear-wave velocities from tomography inversion of first-arrival times were compared with ones from inverting dispersion curves of Rayleigh waves. Although the two velocity sections look similar to each other in general, the one from the surface waves tends to have lower velocities. First arrival picking of SH waves is troublesome since P and PS-converted waves arrive earlier than SH waves. Application of the surface wave method, on the other hand, is limited where lateral variation of subsurface tructures is not mild.

  • PDF

Traveltime estimation of first arrivals and later phases using the modified graph method for a crustal structure analysis (지각구조 해석을 위한 수정 그래프법을 이용한 초동 및 후기 시간대 위상의 주시 추정)

  • Kubota, Ryuji;Nishiyama, Eiichiro;Murase, Kei;Kasahara, Junzo
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • The interpretation of observed waveform characteristics identified in refraction and wide-angle reflection data increases confidence in the crustal structure model obtained. When calculating traveltimes and raypaths, wavefront methods on a regular grid based on graph theory are robust even with complicated structures, but basically compute only first arrivals. In this paper, we develop new algorithms to compute traveltimes and raypaths not only for first arrivals, but also for fast and later reflection arrivals, later refraction arrivals, and converted waves between P and S, using the modified wavefront method based on slowness network nodes mapped on a multi-layer model. Using the new algorithm, we can interpret reflected arrivals, Pg-later arrivals, strong arrivals appearing behind Pn, triplicated Moho reflected arrivals (PmP) to obtain the shape of the Moho, and phases involving conversion between P and S. Using two models of an ocean-continent transition zone and an oceanic ridge or seamount, we show the usefulness of this algorithm, which is confirmed by synthetic seismograms using the 2D Finite Difference Method (2D-FDM). Characteristics of arrivals and raypaths of the two models differ from each other in that using only first-arrival traveltime data for crustal structure analysis involves risk of erroneous interpretation in the ocean-continent transition zone, or the region around a ridge or seamount.

Microseismic Data Analysis Program for Monitoring Ground Subsidence in Mining Area (광산지역 지반침하 모니터링을 위한 미소진동 분석프로그램 개발 현황)

  • Park, Juhyun;Park, Jayhyun;Yang, Injae;Kim, Jungyul;Kim, Yoosung;Kwon, Sungil;Kwon, Hyongil
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.4
    • /
    • pp.262-272
    • /
    • 2018
  • A system for microseismic monitoring due to underground displacements is being operated in several mining areas in order to analyze ground subsidence. Microseismic monitoring system mainly consist of three components; 3-component geophone, data logger and analysis program. The previous analysis program had found the location of microseismic source by analysing only first arrivals of P-waves, but the upgraded analysis program has improved accuracy of the location by analysing both P- and S-waves. This analysis program also has upgraded the function to calculate the microseismic magnitude by using regional specific coefficient and microseismic amplitude. Also the program has upgraded the function to confirm visual location of microseismic source by superimposing field aerial photographs and the results.

Acquisition and Processing of Shallow Vector Seismic Data (천부 탄성파 벡터자료 획득 및 분석)

  • Hong, Myung-Ho;Kim, Ki-Young;Hwang, Yoon-Gu
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.81-87
    • /
    • 2005
  • Acquisition and processing of vector seismic waves were conducted through simultaneous generation of P, SH, and SV waves and receiving those waves using three-component geophones. Test data were received by 24 8-Hz geophones at an interval of 2 m along a 94-m profile. The data were recorded for 512 ms with sampling intervals of 0.2 ms. Raw data indicate that both reflected and refracted P waves are strongly recorded on the vertical component while SH waves are significant on the transverse horizontal component. On the inline horizontal component, both direct P and converted PS waves are recorded. First arrivals of P and SH waves were detected simultaneously on the vertical and transverse horizontal axes, respectively. The recorded vector data were separately inverted using traveltime tomography to yield P- and SH-wave sections. Using those two velocity sections, Poisson's ratios were able to be obtained effectively.

  • PDF

A Study on the Improvement of Microseismic Monitoring Accuracy by Borehole 3-Component Measurement Field Experiments (시추공 3성분 계측 현장실험을 통한 미소지진 모니터링 정확도 향상 연구)

  • Kim, Jungyul;Kim, Yoosung;Yun, Jeumdong;Kwon, Sungil;Kwon, Hyongil;Park, Seongbin;Park, Juhyun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In order to improve the accuracy of microseismic epicenter location through the inversion techniques using P and S wave first arrivals, field experiments of microseismic monitoring were performed using borehole 3-component geophones. The direction of epicenter was estimated from the hodograms of P-wave first arrivals through the weight drop experiments in which the $\times$ component of 3-component geophone was aligned to the magnetic north. The picking of S wave first arrival was possible in the polarization filtered data even if S waves are difficult to be identified in raw data. The inversion technique using only P wave first arrival times can often converge to the local minimum when the initial values for epicenter are largely apart from the true epicenter, so that the correct solution can not be found. To solve this problem, the epicenter determination method using differences between P and S wave arrival times was used to estimate proper initial values of epicenter. The inversion result using only P-wave first arrival times which started from the estimated initial values showed the improved accuracy of the epicenter location.

Possible Methods of Identifying Underground Cavities Using Seismic Waves (지진파를 이용한 지하 공동의 탐지 방법)

  • 김소구;마상윤;김지수
    • The Journal of Engineering Geology
    • /
    • v.6 no.3
    • /
    • pp.137-153
    • /
    • 1996
  • The purpose of this study is to investigate the possibilities of identifying and detecting underground cavities using seismic waves recorded by the fixed and mobile stations. During 18 months of field work we recorded chemical explosions near the Bongdarn station. Seismic Stations were installed on the free surface and underground inside the Samba mine. The seismograms at the fixed(lorg-term) seismic station show abrupt change of polarization characteristics which can he associated with the appearance of P-to-S converted phase(PS) at 150 ~ 200 msec after the first P arrival. This result indicates that converted phases are generated very near to the Bongdarn station at a depth of 190m. Shear-wave splitting phenomena have also been observeci The time delay between fast shear(fS) and slow shear(sS) waves ranges between 30 and 60 msec(average is 42 msec). However, exact time delay between the fast and the slow shear waves can not be accurately measured because of the very short time delay and limitation of sampling rate. Chemical explosion experiments were recorded at stations along various paths to contrast the seismic response of areas with and without cavities. The seismograms recorded at the stations installed at cavity areas show an abrupt change of polarization characteristics but not on the other stations. Seismic waves propagating through the cavity are characterized by the attenuation of high frequency waves and predominantly low frequency seismic waves after the S wave arrivals.

  • PDF