• Title/Summary/Keyword: fire-dynamics

Search Result 312, Processing Time 0.025 seconds

Prediction of the Fire Curtain Effect through a Numerical Simulation of a Reduced Scale Model for Fires in Theaters (공연장 화재 축소모형의 전산시뮬레이션을 통한 방화막 영향 예측)

  • Kim, Dong Hwan;Lee, Chi Young;Kim, Duncan
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.51-59
    • /
    • 2018
  • Although a fire curtain plays an important role in preventing smoke from spreading to the auditorium in a theater fire, there has been insufficient research on fire curtains. In this study, to check the accuracy of numerical simulation, for previous experiments using a reduced scale model, a numerical simulation was carried out, and the results were compared with previous experimental data. The fire curtain effect was then predicted numerically. A Fire Dynamics Simulator (FDS) was used, and the natural exhaust vent sizes were set to ~10%, ~5%, and ~1% of the stage floor area. The smoke movement was visualized, and the mass flow rates and temperatures were measured and analyzed. In addition, the law of similarity was used to examine the influence of a fire curtain in a real scale theater fire. Without the fire curtain, the present numerical simulation results were in agreement with the previous experimental data within reasonable accuracy. Meanwhile, the fire curtain affects the mass flow rates through the natural exhaust vent and proscenium opening, as well as the start time of soot outflow to the auditorium. Overall, the present results can be used to develop a fire curtain system.

COMPUTATIONAL SIMULATION OF FIRE SUPPRESSION SYSTEM FOR CABINS OF SHIPBOARD ENCLOSURE (선박 거주구역용 소화시스템의 전산 시뮬레이션)

  • Jung, I.S.;Chung, H.T.;Han, Y.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.40-45
    • /
    • 2016
  • The numerical simulation has been performed to predict the performance of the fire suppression system for cabin of shipboard enclosure. The present study aims ultimately at finding the optimal parametric conditions of the mist-injecting nozzles using the CFD methods. The open numerical code was used for the present simulation named as FDS (Fire Dynamics Simulator). Application has been done to predict the interaction between water mist and fire plume. In this study, the passenger cabin was chosen as simulation space. The computational domains for simulation in the passenger cabin were determined following the fire scenario of IMO rules. The full scale of the flow field is $W{\times}L{\times}H=4{\times}3{\times}2.4m^3$ with a dead zone of $W{\times}L{\times}H=1.22{\times}1.1{\times}2.4m^3$. The water mist nozzle is installed in ceiling center of 2.3 m height from the floor, and there are six mattresses and four cushions in the simulation space. The combination patterns of orifices to the main nozzle and the position to install nozzles were chosen as the simulation parameters for design applications. From the present numerical results, the centered-located nozzles having evenly combined orifices were shown as the best performance of fire suppression.

A Numerical Study of Smoke Movement by Fire In Atrium Space (화재 발생시 연기 거동에 대한 수치해석적 연구 - 아트리움 공간을 중심으로 -)

  • 노재성;유홍선;정연태
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.70-76
    • /
    • 1998
  • The smoke filling process for the atrium space containing a fire source is simulated using two types of deterministic fire models : Zone model and Field model. The zone model used is the CFAST(version 1.6) model developed at the Building and Fire Research Laboratories, NIST in the USA. The field model is a self-developed fire field model based on Computational Fluid Dynamics(CFD) theories. This article is focused on finding out the smoke movement and temperature distribution in atrium space which is cubic in shape. A computational procedure for predicting velocity and temperature distribution in fire-induced flow is based on the solution, in finite volume method and non-staggered grid system, of 3-dimensional equations for the conservation of mass, momentum, energy, species and so forth. The fire model i. e. Zone model and Field model predicted similar results for the clear height and the smoke layer temperature.

  • PDF

Fire Simulation by Pyrolysis Method of FDS for the Small Cone Calorimeter (ISO 5660) (FDS 열분해 모델을 이용한 콘칼로리미터(ISO 5660) 화재 시뮬레이션)

  • Yang, Sung-Jin;Jang, Jung-Hun;Kang, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.206-212
    • /
    • 2009
  • Chemical behaviors of each surface material for interior facilities affect to fire initiation and growth in general fire situation. These chemical behaviors were characterized by thermal properties (Heat release rate, Pyrolysis rate, specific heat, etc) which could be derived from experimental test. Especially, Heat release rate which indicates aspect of fire size is one of the most important property to asses fire hazard and protection needs. The cone calorimeter test (ISO 5660) has recently assumed to a dominant role in bench scale fire testing to obtain the Heat release rate of materials. This value could be calculated by the 'Oxygen Consumption Method' under various producing irradiances to each surface of materials. In this study, Process of the cone calorimeter test was simulated by Pyrolysis model of FDS (Fire Dynamics Simulator by NIST) base on the ISO 5660 international standard. Then, we could estimate the simulation method of FDS in case of single materials through the comparative study with test results.

  • PDF

Fire test for interior material satisfied with the guide for the safety of rail vehicle (철도차량 안전기준을 만족하는 철도차량 내장재의 화재성능 시험)

  • Park, Won-Hee;Lee, Duck-Hee;Jung, Woo-Sung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2149-2153
    • /
    • 2008
  • A large-scale fire test was done for interior materials from a vehicle installed within a fire test room. The interior materials are satisfied with the Korean guide for the safety of rail vehicle. The guide has taken effect since December 2004 in Korea. Ignition source (gas burner) was increased in several controlled steps. The objectives of this test are to assess the fire performance in terms of ignition and flame spread on interior lining materials and to provide data on an enclosure fires involving train interior materials that grow to flashover. This data will be used to develop and calibrate an Fire Dynamics Simulator (FDS) model for fire growth on the interior vehicle.

  • PDF

A Study of Computational Fluid Dynamics Analysis for the Water Spray Distance of Long Jet Monitor (Long Jet Monitor의 소화수 분사 거리에 대한 유동 해석적 연구)

  • Jae-Sang Jo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.907-913
    • /
    • 2023
  • Currently, the sprinkler method is widely used as an initial suppression method in existing firefighting systems. However, this method can cause significant damage to both equipment and facilities in the hydration area. To minimize this damage, fire extinguishing monitors are being developed that can spray fire extinguishing water directly at the point of fire. These monitors are installed on the top floor of the ship, such as the Living Quarter and Ventilation System. While conventional fire extinguishing monitors focus on lightweight research with a short spray port and require a spray distance of about 40 to 45m, recent developments necessitate a longer spray port, similar to a water cannon, requiring a spray distance of about 70 to 75m. This study aims to predict the injection distance of both the existing ship-installed fire extinguisher and the long spray port fire extinguisher through hydrodynamic computer analysis, and to determine whether the injection distance has increased.

Numerical Simulation of Propylene Vertical Wall Fires (프로필렌 수직벽화재의 수치시뮬레이션)

  • Park, Woe-Chul
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.404-409
    • /
    • 2009
  • 수직벽 화재 예측의 정확성을 확인하기 위하여 화재 시뮬레이션용 전산유체역학 모델인 Fire Dynamics Simulator를 프로필렌 수직벽 화재에 적용하였다. 단위면적당 연소율 $7.0{\sim}29.29g/m^2-s$에 대한 버너 중심에서 측정한 온도분포와 비교한 결과, 최고온도가 낮게 예측되는 것 외에는 실험과 잘 일치하였다. 또 연소율의 증가에 따라 경계측의 두께가 일관되게 증가하였다.

  • PDF

Risk Analysis According to the Installation of Fire Doors on Direct Stairs in the Event of a Fire in an Old Apartment (노후 아파트 화재 시 직통계단의 방화문 설치 여부에 따른 위험성 분석)

  • Lee, Sang Im;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.869-878
    • /
    • 2021
  • This study is a study on 11-story apartments that increase the event of fires in old apartments where building-related laws and regulations are not retroactively applied. As a result of analyzing the risk of installing fire doors in Improvement Scenario 2-4, assuming that fire doors are installed as basic scenario 1 in the existing situation where fire doors are not installed at the entrance of direct stairs. In basic scenario 1, the visible distance to the entrance of the direct staircase due to the spread of smoke was 260 seconds. Improvement scenarios 3 to 4 with fire doors installed open 300 seconds after the fire was recognized, and when the fire doors were installed at the entrance of the direct stairs, the visibility to the entrance of the statistics team was less than 600 seconds. In this case, the visibility was 600 seconds at the time of installation of the fire door, and scenarios 3 to 4 increased 56.6% compared to scenario 1, lowering the risk of evacuation by more than 50%. In order to eliminate the risk of non-installation of direct statistical groups that increase the risk of smoke spread, building-related laws such as the Fire Fighting Act shall be retroactively applied when installing a direct stairway entrance or balcony folding evacuation system. The improvement caused by the installation of fire doors has numerically proven the necessity of fire doors during evacuation, and the importance of maintaining fire doors can be grasped.

Numerical Study of the Factors Affecting Fire Flow Velocity in the Case of Interior Fire in an Apartment Building (공동주택 화재 시 화재풍속에 영향을 미치는 인자들에 관한 수치해석적 연구)

  • Kim, Byeongjun;Seo, Chanwon;Shin, Weon Gyu
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.14-19
    • /
    • 2016
  • When an interior fire occurs in an apartment building, pollution of the entrance area by fire smoke before an air fan operates makes the evacuation of people very difficult aswhen the fire doors are opened. Numerical simulations using Fire Dynamics Simulator were conducted to determine the impact of a sprinkler on the fire flow velocity. The fire flow velocity was compared depending on the presence of sprinklers and the sprayed droplet size. The configuration and actual dimensions of an apartment building were used in the numerical simulations. The simulation results showed that fire flow velocity becomes smaller when a sprinkler is installed. In addition, the smaller droplet size results in a smaller fire flow velocity because smaller droplets can be evaporated more easily.

Fire Simulations for the Abandonment Risk Assessment of Main Control Room Fire in Domestic Nuclear Power Plant (국내 원자력발전소의 주제어실 화재 피난 리스크 평가를 위한 화재 시뮬레이션)

  • Kang, Dae Il;Kim, Kilyoo;Jang, Seung-Cheol;Yoo, Seong Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.199-207
    • /
    • 2014
  • In this paper, to systematically assess the abandonment risk of main control room (MCR) fire, fire simulations with Fire Dynamics Simulator were performed and abandonment probabilities were estimated for the MCR bench-board fire of domestic reference nuclear power plant. The fire simulation scenarios performed in this study included propagating and non-propagating fires of the MCR bench-board, and the availability and unavailability of heating, ventilation, and air conditioning system (HVACS). The following results were obtained. First, temperature was the major abandonment impact factor for the MCR bench-board fire if the HVACS was available and optical density was that if the HVACS was unavailable. Second, the fire scenario contributing the MCR bench-board fire abandonment risk was identified to be only the propagating fire. Third, it was confirmed that the abandonment probability of the MCR bench-board fire for domestic reference nuclear power plant could be reduced by using the fire modeling.