• Title/Summary/Keyword: fire temperature

Search Result 2,055, Processing Time 0.032 seconds

Estimation of Strength and Pore Structure of Alkali-Activated Fire Protection Materials at High Temperature (고온에서의 알칼리 활성화 내화성 결합재의 강도 및 공극구조 평가)

  • Song, Hun;Kim, Young-Ho;Kim, Wan-Ki;So, Hyung-Suk
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.4
    • /
    • pp.59-66
    • /
    • 2012
  • This study is interested in identifying the effectiveness of alkali-activated fire protection material compounds including the alkali-activator such as potassium hydroxide, sodium silicate and fly ash as the fire resistant finishing materials. Also, this paper is concerned with change in compressive strength and pore structure of the alkali-activated fire protection material at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of TG-DSC and mercury intrusion porosimetry measurements. This study results show that compressive strength is rapidly degraded depending on a rise of heating temperature. Porosity showed a tendency to increase irrespective of specimen types. This is due to both the outbreak of collapse of gel comprising the cement and a micro crack by heating. However, alkali-activated fire protection material composed of potassium hydroxide, sodium silicate and fly ash has the thermal stability of the slight decrease of compressive strength and porosity at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate.

Study on the Thermal Characteristics of the Fire Fighter's Waterproof Clothing Exposed to the Radiation Heat (복사열에 노출된 소방용 방수복의 열적 특성에 관한 연구)

  • 방창훈
    • Fire Science and Engineering
    • /
    • v.17 no.1
    • /
    • pp.21-25
    • /
    • 2003
  • This experimental study shows the thermal characteristics of the fire fighter's waterproof clothing exposed to the radiation heat. From the test results, the surface temperature of the fire fighter's waterproof clothing exposed to the radiation with the passage of time sharply increased as the exposed-distance became closer. Also as the radiant heat flux increased, the surface temperature is higher and the time reaching steady state is sharply shorter. As the exposed-distance become more distant, the surface temperature of the fire fighter's waterproof clothing decreased and the difference of temperature between the front side and the back side of the clothing decreased as well. Besides, the radiant heat flux increased, the safety exposed-distance increased. Therefore it is necessary that fire fighter have to work keeping a fixed safe distance from the radiant heat source.

Analysis of Installation Environment and Fire Risk of Induction Motors Installed in the Curing Process of a Rubber Product Manufacturing Plant (고무제품제조공장의 가류공정에 설치된 유도전동기의 설치환경 및 화재위험성 분석)

  • Jong-Chan Lee;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.23-29
    • /
    • 2023
  • This study analyzed the fire status of a rubber product manufacturing factory based on 19 years of fire data. Through the analysis of the current state of fire, electrical fires accounted for 58.19%, and among electrical fires, motor fires were the highest at 26.21%. For the motor fire occurrence process, the curing process accounted for the highest rate of 51.9%. Therefore, the installation environment was investigated for the motor in the curing process, and it was confirmed that the motor's maximum ambient temperature exceeded 40℃. In particular, in the case of the motor for curing operation, the motor was installed in a separate motor room, so the average indoor temperature was 48.10℃ and the motor frame's maximum temperature was 72.80℃. In this study, the risk of motor fire was confirmed through a field survey, and a safety management plan was derived by finding a process with high fire risk and conducting an experiment on the motor's installation environment and electrical characteristics in that process.

A Study on Cable Functional Failure Temperature by Exposed Fire in Nuclear Power Plants (원전 노출 화재시 케이블 기능상실 온도에 관한 연구)

  • Kim, Doo-Hyun;Lim, Hyuk-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.41-45
    • /
    • 2011
  • The fire event occurred in fire proof zone often causes serious electrical problems such as shorts, ground faults, or open circuits in nuclear power plants. These would be directed to the loss of safe shutdown capabilities performed by safety related systems and equipments The fire event can treat the basic design principle that safety systems should keep their functions with redundancy and independency. In case of a cable fire, operators can not perform their mission properly and can misjudge the situation because of spurious operation, wrong indication or instrument. These would deteriorate the plant capabilities of safety shutdown and make disastrous conditions. In this paper, the cables of the representative nuclear power plant in korea is selected and the cable functional failure temperature by exposed fire using Cable Response to Live Fire(CAROLFIRE) is studied. It is expected that the results are very useful to know the cable failure temperature by exposed fire. We confirmed the safety and integrity of the cable by exposed fire and those results will use the based data of cable exposed fire characteristics.

A Numerical Study of Smoke Movement by Fire In Atrium Space (화재 발생시 연기 거동에 대한 수치해석적 연구 - 아트리움 공간을 중심으로 -)

  • 노재성;유홍선;정연태
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.70-76
    • /
    • 1998
  • The smoke filling process for the atrium space containing a fire source is simulated using two types of deterministic fire models : Zone model and Field model. The zone model used is the CFAST(version 1.6) model developed at the Building and Fire Research Laboratories, NIST in the USA. The field model is a self-developed fire field model based on Computational Fluid Dynamics(CFD) theories. This article is focused on finding out the smoke movement and temperature distribution in atrium space which is cubic in shape. A computational procedure for predicting velocity and temperature distribution in fire-induced flow is based on the solution, in finite volume method and non-staggered grid system, of 3-dimensional equations for the conservation of mass, momentum, energy, species and so forth. The fire model i. e. Zone model and Field model predicted similar results for the clear height and the smoke layer temperature.

  • PDF

A Fire Detection System Using Fuzzy Logic with Input Variables of Temperature and Smoke Density (열과 연기농도를 입력변수로 갖는 퍼지로직을 이용한 화재감지시스템)

  • Hong Sung-Ho;Kim Doo-Hyun;Kim Sang-Chul
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.42-51
    • /
    • 2004
  • This paper presents a study on the analysis of fire detection system using fuzzy logic with input variables of temperature and smoke density. The input variables for the fuzzy logic algorithm are measured by fire experiment of small scale with temperature detector and smoke detector. The antecedent part of fuzzy rules consists of temperature and smoke density, and the consequent part consists of fire possibility. Also the triangular fuzzy membership function is chosen for input variables and fuzzy rules to simplify computation. In order to calculate fuzzy values of such fuzzy system, a computer program is developed with Matlab based on graphics user interface. The experiment was conducted with paper and ethanol to simulate flaming fire and with plastic and sawdust to model smoldering fire. The results showed that the fire detection system presented here was able to diagnose fire very precisely. With the help of algorithms using fuzzy logic we could distinguish whether fire or not.

An experimental study on the fire hazard of Sheath Heater (시즈히터의 화재위험성에 관한 실험 연구)

  • Kim, Hakjoong
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.4
    • /
    • pp.511-517
    • /
    • 2014
  • Recently, the fire by sheath heater has been occurred frequently on winter season. The sheath heater has simple internal structure and boils water simply. Therefore, the use of sheath heater has been increased. In this study, found the fire hazard property of sheath heater from understanding the fire mechanism through the experiment to get the measure for decreasing the occurrence of fire. For the analysis of the fire hazard property of the sheath heater, performed the test of temperature change and ignition temperature by using current product. On the result of test, the sheath heaters are the most dangerous appliance to arise fire. Water temperature controller attached to sheath heater is not sufficient to prevent overheating it. The sheath heater should have level switch of water and temperature controller for heater itself to shut off the power supply. Because the cause of fire by sheath heater is overheating itself in the situation of lack water.

Buckling resistance behavior of WGJ420 fire-resistant weathering steel columns under fire

  • Yiran Wu;Xianglin Yu;Yongjiu Shi;Yonglei Xu;Huiyong Ban
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.269-287
    • /
    • 2023
  • The WGJ420 fire-resistant weathering (FRW) steel is developed and manufactured with standard yield strength of 420 MPa at room temperature, which is expected to significantly enhance the performance of steel structures with excellent fire and corrosion resistances, strong seismic capacity, high strength and ductility, good resilience and robustness. In this paper, the mechanical properties of FRW steel plates and buckling behavior of columns are investigated through tests at elevated temperatures. The stress-strain curves, mechanical properties of FRW steel such as modulus of elasticity, proof strength, tensile strength, as well as corresponding reduction factors are obtained and discussed. The recommended constitutive model based on the Ramberg-Osgood relationship, as well as the relevant formulas for mechanical properties are proposed, which provide fundamental mechanical parameters and references. A total of 12 FRW steel welded I-section columns with different slenderness ratios and buckling load ratios are tested under standard fire to understand the global buckling behavior in-depth. The influences of boundary conditions on the buckling failure modes as well as the critical temperatures are also investigated. In addition, the temperature distributions at different sections/locations of the columns are obtained. It is found that the buckling deformation curve can be divided into four stages: initial expansion stage, stable stage, compression stage and failure stage. The fire test results concluded that the residual buckling capacities of FRW steel columns are substantially higher than the conventional steel columns at elevated temperatures. Furthermore, the numerical results show good agreement with the fire test results in terms of the critical temperature and maximum axial elongation. Finally, the critical temperatures between the numerical results and various code/standard curves (GB 51249, Eurocode 3, AS 4100, BS 5950 and AISC) are compared and verified both in the buckling resistance domain and in the temperature domain. It is demonstrated that the FRW steel columns have sufficient safety redundancy for fire resistance when they are designed according to current codes or standards.

Study of the Fire Risk Caused by the Use of a Bimetal type Thermometer in the Drying Equipment (바이메탈식 온도센서를 적용한 건조설비에서의 화재 위험성 연구)

  • Park, Nam-Kyu;Kim, Jin-Pyo;Nam, Jung-Woo;Park, Jong-Taek;Song, Jae-Yong
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.73-78
    • /
    • 2017
  • In this paper, the fire risk using a bimetal type thermometer for construction installation is presented. Because construction equipment is used widely in the field and the site is exposed to explosions and fire by combustible gas or fume, strong restrictions on the structure and usage are applied. Moreover, the risk of fire increases as precise temperature measurements are poorly conducted via an inner temperature sensor inside construction furnace. Therefore, this paper presents the results of structural analysis of a bimetal temperature sensor which is used widely in construction installation and temperature measurement experiments relative to the material property of the target object. The results revealed the relatively precise temperature of the liquid object, whereas those of the gas and solid object showed a lower temperature compared to the real temperature. This shows that bimetal-type temperature sensor is more suitable for measuring a liquid state object than measuring a gas or solid state object.

An Experimental Study on the Supposed Heating Temperature of Exposed Concrete at High Temperature (고온에 노출된 콘크리트의 수열온도 추정을 위한 실험적 연구)

  • Jang Jea bong;Lee Eui Bae;Cho Bong Suk;Kim Yong Ro;Kwon Young Jin;Kim Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.157-160
    • /
    • 2004
  • If concrete structure is exposed to high temperature such as long-term fire, damages affecting partial or whole structure system may occur. Therefore accurate diagnosis of deterioration is needed based on mechanism of fire deterioration in general concrete structures. Fundamental information and data on the properties of concrete exposed to high temperature are necessary. Especially, the amount of fire damage done to concrete depends on the materials, the standard design compressive strength of concrete, and heated temperature. So, the object of this study is to present data for supposed heated Temperature of deteriorated concrete by fire.

  • PDF