• Title/Summary/Keyword: fire retardant materials

Search Result 102, Processing Time 0.025 seconds

Study of Fabrication and Improvement of Mechanical Properties of Mg-based Inorganic Fiber using Reflux Process and Silica Coating

  • Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.195-200
    • /
    • 2019
  • Whisker-type magnesium hydroxide sulfate hydrate ($5Mg(OH)_2{\cdot}MgSO_4{\cdot}3H_2O$, abbreviated 513 MHSH), is used in filler and flame-retardant composites based on its hydrate phase and its ability to undergo endothermic dehydration in fire conditions, respectively. In general, the length of whiskers is determined according to various synthetic conditions in a hydrothermal reaction with high temperature (${\sim}180^{\circ}C$). In this work, high-quality 513 MHSH whiskers are synthesized by controlling the concentration of the raw material in ambient conditions without high pressure. Particularly, the concentration of the starting material is closely related to the length, width, and purity of MHSH. In addition, a ceramic-coating system is adopted to enhance the mechanical properties and thermal stability of the MHSH whiskers. The physical properties of the silica-coated MHSH are characterized by an abrasion test, thermogravimetric analysis, and transmission electron microscopy.

Flame-retarding effects depending on the number of phosphonate groups attached to phosphorus flame-retarding compounds and coating binder resins (인계 난연화합물 및 코팅 바인더 수지에 부착된 phosphonate group에 따른 난연효과)

  • Park, Hyo-Nam;Kim, Hae-Rim;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1678-1686
    • /
    • 2021
  • In this study, we prepared phosphorous flame-retarding coating solutions by mixing triphosphate (3 phosphonate), phytic acid (6 phosphonate), or ammonium polyphosphate (10 phosphonate) with boric acid as a crosslinking agent and acryl resin binder. Prepared phosphorous flame-retarding coating solutions were coated onto non-woven fabrics, respectively, to obtain high flame-retarding effects. These prepared flame-retardant non-woven fabrics were evaluated using smoke density standard test (ASTM E662), limit oxygen index standard test (ISO E622), and vertical burning standard test (UL 94). Their flame-retarding effects were affected by the number of phosphonate groups. Regardless of natural or synthetic binder resins, their effects showed the following order: ammonium polyphosphate > phytic acid > triphosphate. Natural hydrocarbon compounds were also examined to determine the possible retardancy of binder resins. Results showed that natural hydrocarbon binder resins could be used for preparing fire-retardant nonwoven fabrics.

Properties and Thermal Characteristics of Phenol Foam for Heat Insulating Materials (단열재용 페놀폼의 물성과 열적특성)

  • Kim, Dong-Kwon;Lee, Soo-Bok
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.357-360
    • /
    • 2006
  • In this study, we studied the physical properties and application of PF foam as heat insulating materials. In the experimental results, the density of PF foam showed $0.030g/cm^3$ and the thermal conductivity showed $0.026kcal/m.h.^{\circ}C$. Also, thermal resistance of the prepared PF foam was volatilized about 71.7 wt% when the temperature was $500^{\circ}C$ (1 h). And the chemical structure of PF foam have a closed cell type in the important properties as heat insulating materials. Therefore, it was confirmed that the prepared PF foam had excellent performance as heat insulating materials.

Experimental Study on the Flash Over Delay Effects according to the Prevention of Flame Spread between Composite Material Panels (복합자재의 패널 간 화염확산방지에 따른 플래시오버 지연 효과에 대한 실험적 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • A sandwich panel is a composite material composed of a double-sided noncombustible material and insulation core which is used in the inner, outer walls, and roof structure of a building. Despite its excellent insulation performance, light weight and excellent constructability, a flame is brought into the inside of the panel through the joint between the panels, melting the core easily and causing casualties and property damage due to the rapid spread of flame. The current Building Law provides that the combustion performance of finishing materials for buildings should be determined using a fire test on a small amount of specimen and only a product that passes the stipulated performance standard should be used. This law also provides that in the case of finishing materials used for the outer walls of buildings, only materials that secured noncombustible or quasi-noncombustible performance should be used or flame spread prevention (FSP) should be installed. The purpose of this study was to confirm the difference between the dangers of horizontal and vertical fire spread by applying FSP, which is applied to finishing materials used for the outer walls of buildings limitedly to a sandwich panel building. Therefore, the combustion behavior and effects on the sandwich panel according to the application of FSP were measured through the construction to block the spread of flame between the panels using a full scale fire according to the test method specified in ISO 13784-1 and a metallic structure. The construction of FSP on the joint between the panels delayed the spread of flame inside the panels and the flash over time was also delayed, indicating that it could become an important factor for securing the fire safety of a building constructed using complex materials.

A Study on Combustion Characteristic of the Using Wood Flooring as Wall Material (목질바닥재의 벽재사용에 따른 연소특성에 관한 연구)

  • Yoo, Ji Chang;Choi, Chul;Yang, Sung Min;Lee, Chang Goo;Kang, Seog Goo
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • Increasing concerns of environment need to make change furniture field to more environmentally friendly approach, such as reuse of by-products from wooden products. As it is, the methods of recycling wood for industrial purposes have the advantage of productivity and adaptability. However, the industrial way is required a certain production facility of processing wooden by-products and has possible hygienic problems due to contaminated sources. Many designers have developed their own methods for reuse of wood in unique and artistic ways. Even so, because of confined sources, it could be not enough supply. Therefore, I developed the design methodology utilizing wooden by-products from S Design Company to relieve former ways' problems. The design suggestion took materials from a safe and abundant source. The wooden leftover pieces were connected together with epoxy clay, so previous process traces of furniture are remained as a decorative factor. Moreover, the synthesized material was able to be processed by ordinary woodworking facilities without additional installations. In doing so, console table focused on a commercial purpose and dining table for an artistic objective were successfully fabricated as final suggestions. In consideration of the proposal using wooden furniture leftovers, diverse recycling designs should be investigated for future reference.

SOrganic matter insulation by type of Study on pH change according to underwater settling period (유기질 단열재 종류별 수중정치기간에 따른 pH 변화에 관한 연구)

  • Hong, snag-hun;You, Nam Gyu;Seo, Eun-Seok;Kim, Han-nah;Kim, Bong-Joo;Jung, Ui-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.87-88
    • /
    • 2019
  • Research has been conducted in many fields for the zero energy of domestic buildings. Among them, the development of insulation has become an essential element. Accordingly, researches are being made to improve the performance of organic insulating materials, and PF boards having the lowest thermal conductivity among organic insulating materials have been in the spotlight. However, problems have arisen due to the problems of durability of insulation materials such as PF boards and past acidification, and the durability of insulation materials is deteriorated when moisture or water enters due to crack gaps during the insulation of the basement layer or the external insulation method. In regard to the durability of the insulation, when the organic insulators of different kinds were placed in water, the pH was weakly basic in all organic insulation materials except PF, and the PF was about 4 pH. As a result, the PF should be continuously reviewed, and further analysis should be carried out to determine what causes acidification.

  • PDF

A Study on the Cone Calorimeter Evaluation Method of Sandwich Panels (복합자재 콘칼로리미터평가방법에 대한 연구)

  • Park, Jung-Woo;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.74-82
    • /
    • 2017
  • Fires in buildings built using sandwich panels are difficult to extinguish, and the damage caused by the fire spreading through the inner core material is extensive. Sandwich panels consist of a nonflammable material on both sides of an insulation material. The types of insulation material include organic and inorganic insulation materials, but the former are used in more than 80% of the case. Organic insulation is economically advantageous compared to inorganic insulation, but it is vulnerable to fire. Therefore, the damage caused by sandwich panel fires is higher than that for general fires. In the case of the noxious gas analyzer test, the panel is tested with three round holes having a diameter of 25 mm, in order to determine the risk of the core material, but the cone calorimeter test is carried out using a sandwich panel. In this study, the cone calorimeter test was conducted to examine the fire risk of the composite material when heated on a nonflammable surface, exposed to the core material through a hole, and heated directly the core material. The type of organic insulation employed was flame retardant EPS (Expanded Polystyrene), and the test specimens were tested in three types of sandwich panel, a perforated sandwich panel and single core material. The purpose of this study is to propose a method of measuring the fire risk of the core materials of composite materials using the cone calorimeter test.

Measurement and Prediction of Combustion Characteristics of DEC(Diethyl Carbonate) + DMMP(Dimethyl Methylphosphonate) for Secondary Battery Solutions (2차전지 용액인 DEC(Diethyl Carbonate) + DMMP(Dimethyl Methylphosphonate)계의 연소특성치 측정 및 예측)

  • Y. S. Jang;Y. R. Jang;J. J. Choi;D. J. Jeon;Y. G. Kim;D. M. Ha
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.5
    • /
    • pp.8-14
    • /
    • 2023
  • Lithium ions can induce the thermal runaway phenomenon and lead to reignition due to electrical, mechanical, and environmental factors such as high temperature, smoke generation, explosions, or flames, which is extremely likely to create safety concerns. Therefore, one of the ways to improve the flame retardancy of the electrolyte is to use a flame-retardant additive. Comparing the associated characteristic value of existing substances with the required experimental value, it was found that these values were either considerably different or were not documented. It is vital to know a substance's combustion characteristic values, flash point, explosion limit, and autoignition temperature (AIT) as well as its combustion characteristics before using it. In this research, the flash point and AIT of materials were measured by mixing a highly volatile and flammable substance, diethyl carbonate (DEC), with flame-retardant dimethyl methylphosphonate (DMMP). The flash point of DEC, which is a pure substance, was 29℃, and that for DMMP was 65℃. Further, the lower explosion limit calculated using the measured flash point of DEC was 1.79 Vol.%, while that for DMMP was 0.79 Vol.%. The AIT was 410℃ and 390℃ for DEC and DMMP, respectively. In particular, since the AIT of DMMP has not been discussed in any previous study, it is necessary to ensure safety through experimental values. In this study, the experimental and regression analysis revealed that the average absolute deviation (ADD) for the flash point of the DEC+DMMP DEC+DMMP system is 0.58 sec and that the flash point tends to increase according to changes in the composition employed. It also revealed that the AAD for the AIT of the mixture was 3.17 sec and that the AIT tended to decrease and then increase based on changes in the composition.

Characteristics Analysis of Highly Elastic Materials according to the Graphite Content and a Simulation Study of Physical Properties Prediction Using a Nonlinear Material Model (열팽창성 그래파이트 함량에 따른 고탄성 도료 소재의 특성 분석 및 비선형 재료모델을 활용한 물성 예측 시뮬레이션 연구)

  • Yu, Seong-Hun;Lee, Jong-Hyuk;Kim, Dae-cheol;Lee, Byung-Su;Sim, Jee-Hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.250-260
    • /
    • 2022
  • In this research, a high-elasticity acrylic emulsion binder with core-shell polymerization and self-crosslinking system is mixed with a flame-retardant water-dispersed polyurethane (PUD) binder. In addition, finite element analysis was conducted through virtual engineering software ANSYS by applying three representative nonlinear material models. The most suitable nonlinear material model was selected after the relative comparison between the actual experimental values and the predicted values of the properties derived from simulations. The selected nonlinear material model is intended to be used as a nonlinear material model for computational simulation analysis that simulates the experimental environment of the vibration test (ASTM E1399) and the actual fire safety test (ASTM E1966). When the mass fraction of thermally expandable graphite was 0.7%, the thermal and physical properties were the best. Among the nonlinear material models, the simulation result of the Ogden model showed the closest value to the actual result.

Flame Retardancy of Zelkova Sarrata Treated with Ammonium Salts (암모늄염으로 처리된 느티나무의 난연성 시험)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.399-406
    • /
    • 2010
  • This study was performed to test the flame retardancy of zelkova sarrata-based materials by the treatment of ammonium salts. Zelkova sarrata plate was soaked by the treatment with three 20 wt% ammonium salt solutions consisting ammonium chloride (AMSL), monoammonium phosphate (MAPP), and diammonium phosphate (DAPP), respectively, at the room temperature. After the drying specimen treated with chemicals, combustion properties were examined by the cone calorimeter (ISO 5660-1). When the ammonium salts were used as the retardant for zelkova sarrata, the flame retardancy improved due to the treated ammonium salts in the virgin zelkova sarrata. However the specimen shows increasing CO over virgin zelkova sarrata and It is supposed that toxicities depend on extents. Also, the specimen with ammonium salts showed the higher total smoke release (TSR) than that of virgin plate. Of specimens treated with ammonium salts the ammonium chloride handled the test side was considered a improved inhibitory effect of combustion.