• Title/Summary/Keyword: fire retardant materials

Search Result 102, Processing Time 0.028 seconds

A Study on Composites of Ethylene-Vinyl Acetate Copolymer and Ethylene-Propylene-Diene Rubber with Aluminum Hydroxide as a Fire Retardant

  • Lee, Yu Jun;Lee, Su Bin;Jung, Jae Young;Lee, Dam Hee;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.93-98
    • /
    • 2016
  • The composites of EVA/EPDM including aluminum trioxide (ATH) as a fire retardant were manufactured for the purpose of improving low temperature property and flame resistance in the rubbery materials. The ratio of EVA to EPDM didn't affect the flame resistance of the rubber composites. The addition of ATH resulted in increase of the flame resistance. In the evaluation of the cold resistance, the increasing EPDM content showed enhancement of cold resistance in the composites due to increasing low Tg EPDM. It was found out that tensile strengths of the composites showed a maximum value at 100 phr of ATH by reinforcing effect, but a minimum value at 200 phr of ATH owing to slippage between the flame retardant by the external stress. In the measurement of solvent resistance in tetrahydrofuran, the increasing ATH content yielded enhancement of solvent resistance by reducing swelling of the composite, and increasing EPDM content also resulted from increase of the solvent resistance by reduction of polarizability as well as increase of crosslink in the composites.

Study on the Internal Temperature of Flame Resistant Treated Wood Exposed to a Standard Fire (표준화재에 노출된 방염처리 목재의 내부온도에 관한 연구)

  • Kim, Hwang-Jin
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.14-18
    • /
    • 2018
  • The earlier studies on the fire resistance performance of woods used as building materials have focused on confirming combustion characteristics of fire retardant or flame resistant treated wood. In this paper, to confirm internal temperature changes closely related to pyrolysis of woods exposed to the flame, heating experiments were conducted in a heating furnace according to the standard heating temperature curves after Douglas-fir, which is widely used as structural materials, was treated with a flame resistant solution and flame retardant paint. As a result of the experiment, it was confirmed that the thermal diffusion inside the wood has decreased when the wood was treated with the flame resistant solution. However, in high temperature, the flame resistant effect could not be expected due to the peeling of the coating in the case of the flame resistant paint treated wood. Therefore, it can be considered that it is more effective to use the flame resistant solution which penetrates in to the inside of the wood than flame resistant paint which forms the coating on the surface of the wood in order to enhance the flame resistance effect on the thick wood.

Properties and Development of Halogen Free Flame Retardant Cable (Halogen Free 난연 케이블의 제특성 및 개발)

  • Choi, W.K.;Choi, W.;Seo, S.J.;Yang, H.J.;Won, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.768-770
    • /
    • 1992
  • Conventional flame retardant cable using PVC or CR materials generate considerable amount of toxic and acidic gas (HCI etc.) together with excessive black smoke during a fire. The newly developed halogen free materials have dissolved the problem of halogen acid gases. This paer describes the development of this power cable insulation and sheath, using halogen free materals.

  • PDF

Radical Addition Reaction of Phosphorous based Flame Retardant with End Groups of PET (2) - Reaction of Resorcinol bis(diphenyl phosphate) - (PET 말단에 대한 인계난연제의 라디칼계 부가반응 (2) - 리소시놀비스다이페닐포스페이트의 반응 -)

  • Kim, Min-Kwan;Sohn, Kwang-Ho;Ghim, Han-Do
    • Textile Coloration and Finishing
    • /
    • v.24 no.1
    • /
    • pp.39-44
    • /
    • 2012
  • To improve flame retardation of poly(ethylene terephthalate) (PET) against burning, resorcinol bis(diphenyl phosphate) (RDP), phosphorous containing flame retardant, was incorporated into PET backbone by radical reaction pathway. Radical endcapping of PET with RDP was confirmed by spectroscopic and thermal analysis. From 400 MHz $^{31}P$ solid state FT-NMR spectrum of PET with RDP (PET-RDP), phosphorus spectra peak in RDP was found at ca. -10 ppm. Furthermore, P-C bond stretching vibration peaks were found ca. $530cm^{-1}$ in FT-IR spectrums of PET-RDP. These results indicated that RDP can be chemically bound at the ends of PET by radical addition method. Thermal characteristics of pure PET (pPET) and PET-RDP were measured and evaluated by TGA thermal analysis. There was not significant changes in thermal characteristics of PET-RDP compared to that of pPET.

High Flame Retardancy and High-strength of Polymer Composites with Synergistically Reinforced MOSw and EG

  • Kim, Chowon;Lee, Jinwoo;Yoon, Hyejeong;Suhr, Jonghwan
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.359-364
    • /
    • 2022
  • Polymers are inherently vulnerable to flame, which limits their application to various high-tech industries. In addition, environmental regulations restrict the use of halogen-based flame retardants which has best flame-retardant effect. There are inorganic flame retardants and phosphorous flame retardants as representative non-halogen-based flame retardants. However, high content of flame retardants is required to impart high flame retardancy of the polymers, and this leads to a decrease in mechanical properties. In this research, a new approach for inorganic flame retardant-based polymer composites with high mechanical properties and flame retardancy was suggested. Inorganic flame retardants called as magnesium oxysulfate whisker (MOSw) were used in this research. MOSw can extinguish fire by releasing water and non-combustible gases when exposed to flame. In addition, they have reinforcing effect when added into the polymer with its high aspect ratio. Expandable graphite (EG) was used as a flame-retardant supplement by helping to form a more dense char layer. Through this research, it is expected that it can be applied to various industries requiring flame retardancy such as automobile, and architecture by replacing halogen-based flame polymer composites.

Flame Retardant Performance of Functional Oil Stains According to the Mixing Ratio of Inorganic Flame Retardants and Phosphorus Flame Retardants (무기계 방염제와 인계 방염제 혼합비율에 따른 기능성 오일스테인의 방염성능)

  • Lee, Ju-Won;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.29-30
    • /
    • 2023
  • Wood is a construction material that has the advantages of carbon dioxide storage ability, noise reflection, and eco-friendliness. In order to use wood for a long time, you must use wood-specific paint, which is called oil stain. Oil stain improves water resistance and moisture resistance, but has the disadvantage of being weak against fire. This is because the oil contained in the oil stain causes a chemical reaction, and this chemical reaction causes the oil stain to spontaneously ignite, igniting nearby combustible materials and causing frequent fires. To improve this, in this study, different flame retardants were mixed and added to oil stain to produce functional oil stain. In addition, we would like to apply it to wood to check glow time and carbonization area. As a result of the experiment, it shows the best performance when mixed at 30(15 + 15)(%) and added to oil stain. The remaining burn time is satisfied from 10% for all samples, and the carbonized area is satisfied when it is 30%.

  • PDF

A Study on Fire Resistance of Abaca/Vinyl-ester Composites (마닐라 삼/비닐에스터 복합재료의 내화성 연구)

  • Lee, Dong-Woo;Park, Byung-Jin;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • Eco-convivial composites with improved properties are essential to present polymer scenario and can be made easily by replacing partially/completely renewable materials either matrix or reinforcement along with few % of additives. In these investigations, Abaca fabric have been used as reinforcement for manufacturing of Vinyl ester composites through VARTM technique and study the effect of alkali surface treatment of abaca fabric and flame retardant additives i.e., ammonium polyphosphate (APP) with halloysite nano-clay (HNT) on mechanical and flame retardant properties. The results concluded that, surface treatment deceased the hydrophilic nature of fabric and enhanced the interfacial bonding with hydrophobic matrix and eventually increased mechanical properties slightly of developed composites. Similarly, the flame retardancy of the composites improved significantly and increases the burning time by varying the wt% of filler concentration.

Preparation and Characterization of Fire-Resistant Silicone Polymer Composites Containing Inorganic Flame Retardants (무기계 난연제를 첨가한 실리콘 고분자 내화재료의 제조 및 특성분석)

  • Yoon, Chang-Rok;Lee, Jong-Hyeok;Bang, Dae-Suk;Won, Jong-Pil;Jang, Il-Young;Park, Woo-Young
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.87-93
    • /
    • 2010
  • The fire resistive materials are used to resist from fire accidents in the building. In this study silicone rubber/inorganic flame retardant composites were prepared by mechanical stirring method, using aluminium trihydroxide(ATH, $Al(OH)_3$) and magnesium dihydroxide(MDH, $Mg(OH)_2$) as synergistic fire-resistant additives. The thermal properties of the fire resistant composites were characterized by thermogravimetric analysis(TGA). In addition, rheological properties were observed by rheometer and fire-resistant properties were tested by gas torch. Through this study, we realized that the silicone rubber containing ATH, MDH increased the performance of fire-resistance.

The fire-risks of cost-optimized steel structures: Fire-resistant and hot-rolled carbon steel

  • Garcia, Harkaitz;Cuadrado, Jesus;Biezma, Maria V.;Calderon, Inigo
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.67-75
    • /
    • 2021
  • This work studies the behaviour of a steel portal frame selection under fire exposure, considering both span lengths and fire exposure times as variables. Such structures combine carbon steel (S275), fireproof micro-alloyed steel (FR), and coatings of intumescent paint with variable thicknesses, improving thereby the flame retardant behaviour of the steel structure. Thus, the main contribution of this study is the optimization of the portal frames by combining both steels, analysing the resulting costs influence on the final dimensions. Besides, the topological optimization of each steel component within the structure is also defined, in accordance with the following variables: weather conditions, span, paint thickness, and cost of steel. The results mainly confirmed that using both FR and S275 grades with intumescent painting is the Pareto optimum when considering performance, feasibility and costs of such portal frames widely used for industrial facilities.

A Study on the Combustion Characteristics of Synthetic Insulation for Building (건축용 합성 단열재의 연소특성에 관한 연구)

  • Kwon, Hyun-Seok;Lee, Si-Young;Kim, Jong-Buk;Yoon, Myoung-Oh
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.30-37
    • /
    • 2018
  • This study is an analysis of combustion characteristics of synthetic insulation materials such as houses and warehouses. Using combustion cone calorimeter and SEM, the researching has experimented combustion characteristics of four kinds of materials such as flame retardant styrofoam, general styrofoam, urethane and gypsum board. And analyzed. As a result of the test, the ignition time (TTI) for the thermal insulation material was found at 27 s~43 s, and the flame retardant styrofoam was ignited at the lowest TTI at 27 s and disappears at 28 s. In addition, the maximum heat release rate (peak HRR) and average heat release rate (mean HRR) of each material were expressed in the following order: urethane> flame retardant styrofoam> styrofoam> gypsum board. Also, the total smoke release ($m^2/m^2$) was the largest at $30.798m^2/m^2$ in flame-retardant styrofoam. The general CO concentration of styrofoam was 0.275 kg/kg and the emission concentration was 12.807 kg/kg. The residues showed the highest 0.029 g in the gypsum board among the above materials.