• Title/Summary/Keyword: fire resources

Search Result 294, Processing Time 0.029 seconds

Development of Crown Fire Propagation Probability Equation Using Logistic Regression Model (로지스틱 회귀모형을 이용한 수관화확산확률식의 개발)

  • Ryu, Gye-Sun;Lee, Byung-Doo;Won, Myoung-Soo;Kim, Kyong-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • Crown fire, the main propagation type of large forest fire, has caused extreme damage with the fast spread rate and the high flame intensity. In this paper, we developed the probability equation to predict the crown fires using the spatial features of topography, fuel and weather in damaged area by crown fire. Eighteen variables were collected and then classified by burn severity utilizing geographic information system and remote sensing. Crown fire ratio and logistic regression model were used to select related variables and to estimate the weights for the classes of each variables. As a results, elevation, forest type, elevation relief ratio, folded aspect, plan curvature and solar insolation were related to the crown fire propagation. The crown fire propagation probability equation may can be applied to the priority setting of fuel treatment and suppression resources allocation for forest fire.

Study on the Promotion of Recycling of Old Fire Extinguishers (폐 소화기 재활용 촉진 방안에 관한 연구)

  • Jin, Young-Bae;Jung, Myung-won;Oh, Jung-Seok
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.156-163
    • /
    • 2019
  • This study examined the recycling system of a foreign lung excreta system. First, the measures for promoting the recycling of a pulmonary digestive system were as follows. Second, a manual considering specialization, such as the construction of a recycling treatment system of fire extinguishers and the collection, transportation, recycling, publicity, and education of fire extinguishers, were developed. Third, an education and counseling system is needed to overcome the lack of experience and technical support for systematic and safe disposal of pulmonary digestive system. Fourth, to promote the recycling of fire extinguishers in the government and fire extinguisher related organizations, it is necessary to prevent environmental pollution and recycle parts to reduce the waste of resources and improve the fire extinguisher quality by fostering a fire safety industry and policy support.

Delphi Study on the Reduction of Cross-contamination and Improvement of Management System on Firefighting Protection Suit (소방 방화복 교차오염 저감 및 관리체계 개선을 위한 델파이 연구)

  • Kim, Soo Jin;Ham, Seunghon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.182-194
    • /
    • 2022
  • Objectives: This study evaluates and recommends the priority of policy implementation to improve the fire protection clothing management system used by firefighters and the reduction of cross-contamination from contaminated clothing at the scene of a fire. Methods: It consisted of 7 experts and conducted three interviews and two modified Delphi surveys. Through the results of previous research and interviews with experts, a plan to reduce cross-contamination of fire suits and improve the management system was first derived. An improvement plan was presented in the four areas including resources, management, fire protection related work, and laws and regulations, and the priority of policy implementation was derived by analyzing the importance and practicality of the policy at the same time. Results: As a result of the analysis, the first priority was education on the health effects of pollutants at the disaster scene for firefighters, and the second priority was the addition of SOP for the primary decontamination of on-scene personal protective equipment in preparation for the health effects of the disaster scene, and education for fire suppression and rescue workers. The next step was to improve the management system of personal protective equipment such as fire suits and develop a training course for systematic operation. Conclusions: This findings could be used in the implementation of mid- to long-term firefighting policies for the systematic operation and establishment of a systematic management system for personal protective equipment such as fire protective suits.

Normalized Difference Vegetation Index based on Landsat Images Variations between Artificial and Natural Restoration Areas after Forest Fire (산불 지역 인공·자연복원에 따른 Landsat영상 기반 식생지수 비교)

  • Noh, Jiseon;Choi, Jaeyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.5
    • /
    • pp.43-57
    • /
    • 2022
  • This study aims to classify forest fire-affected areas, identify forest types by the intensity of forest fire damage using multi-time Landsat-satellite images before and after forest fires and to analyze the effects of artificial restoration sites and natural restoration sites. The difference in the values of the Normalized Burned Ratio(NBR) before and after forest fire damage not only maximized the identification of forest fire affected and unaffected areas, but also quantified the intensity of forest fire damage. The index was also used to confirm that the higher the intensity of forest fire damage in all forest fire-affected areas, the higher the proportion of coniferous forests, relatively. Monitoring was conducted after forest fires through Normalized Difference Vegetation Index(NDVI), an index suitable for the analysis of effects by restoration type and the NDVI values for artificial restoration sites were found to no longer be higher after recovering the average NDVI prior to the forest fire. On the other hand, the natural restoration site witnessed that the average NDVI value gradually became higher than before the forest fires. The study result confirms the natural resilience of forests and these results can serve as a basis for decision-making for future restoration plans for the forest fire affected areas. Further analysis with various conditions is required to improve accuracy and utilization for the policies, in particular, spatial analysis through forest maps as well as review through site checks before and immediately after forest fires. More precise analysis on the effects of restoration will be available based on a long term monitoring.

The Effect of Forest Fire on the Raptor Habitation (대형 산불이 맹금류 서식에 미치는 영향)

  • Ran Sung-Woo;Lee Joon-Woo;Paek Woon-Kee;Lee Han-Soo;Kim In-Kyn;Hong Gil-Pyo;Kang Jung-Roon;Paek In-Rwan
    • Korean Journal of Environment and Ecology
    • /
    • v.19 no.4
    • /
    • pp.385-392
    • /
    • 2005
  • This study was conducted in order to analysis the forest fire effect to the raptors habitating in and around the large forest fire occurred area, Goseong country, Gangwon province, Korea. There were observed raptor birds belonging to 8 species, 3 families, and 2 orders in the survey area. The most dominant species was Eurasian Hobby(Falco subbuteo), which was followed by Common Buzzard(Buteo buteo), Kestrel(Faico tinnunculus) and Chinese Sparrow Hawk(Accipiter soloensis). The largest number of species and individuals were observed in May 2002. In partially undamaged areas and undamaged areas, five species of rapacious birds were observed, which was the largest number of species observed. If an environment where rapacious birds can build nests is created in forest fire damaged area in order to raise the number of species and population, the number of species and population of rapacious birds living in the forest fire damaged area will grow further.

Experimental and CFD Study on the Exhaust Efficiency of a Smoke Control Fan in Blind Entry Development Sites (맹갱도 굴진 작업공간내 방재팬의 화재연 배기효율에 관한 현장실험 및 CFD 연구)

  • Nguyen, Vanduc;Kim, Dooyoung;Hur, Wonho;Lee, Changwoo
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.38-58
    • /
    • 2018
  • The ventilation system plays a crucial role in underground mine safety. The main objective of the ventilation system is to supply sufficient air to dilute the contaminated air at working places and consequently provide tenable environment during the normal operation, while it also should be capable of controlling the fire propagation and facilitate rescue conditions in case of fire in mines. In this study, a smoke control fan was developed for the auxiliary ventilation as well as the fire smoke exhaust. It works as a free-standing auxiliary fan without tubing to dilute or exhaust the contaminated air from the working places. At the same time, it can be employed to extract the fire smoke. This paper aims to examine the smoke control efficiency of the fan when combined with the current ventilation system in mines. A series of the site experiments and numerical simulations were made to evaluate the fan performance in blind entry development sites. The tracer gas method with SF6 was applied to investigate the contaminant behavior at the study sites. The results of the site study at a large-opening limestone mine were compared with the CFD analysis results with respect to the airflow pattern and the gas concentration. This study shows that in blind development entry, the most polluted and risky place, the smoke fan can exhaust toxic gases or fire smoke effectively if it is properly combined with an additional common auxiliary fan. The venturi effect for smoke exhaust from the blind entry was also observed by the numerical analysis. The overall smoke control efficiency was found to be dependent on the fan location and operating method.

Change in the Concrete Strength of Forest Road Drainage Systems Caused by Forest Fires (산불로 인한 임도 배수시설의 콘크리트 강도 변화)

  • Ye Jun Choe;Jin-Seong Hwang;Young-In Hwang;Hyeon-Jun Jeon;Hyeong-Keun Kweon;Joon-Woo Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.451-458
    • /
    • 2023
  • As forest fires continue to increase in scale worldwide, the importance of forest roads in relation to forest fire prevention and suppression has become increasingly evident. To ensure effective functioning during a forest fire disaster, it is crucial to apply appropriate road planning and ensure roads' structural integrity. However, previous studies have predominantly focused on the impact of forest fires on firebreak efficacy and road placement, meaning that insufficient attention has been paid to ensuring the safety of these facilities. Therefore, this study sought to compare the strength of concrete facilities within areas damaged by forest fires over the past three years by using the rebound hammer test to identify signs of thermal degradation. The results revealed that concrete facilities damaged by forest fires exhibited significantly lower strength (15.6 MPa) when compared with undamaged facilities (18.0 MPa) (p<0.001), and this trend was consistent across all the target facilities. Consequently, it is recommended that safety assessment criteria for concrete forest road facilities be established to prevent secondary disasters following forest fire damage. Moreover, continuous monitoring and research involving indoor experiments are imperative in terms of enhancing the stability of forest road structures. It is expected that such research will lead to the development of more effective strategies for forest fire prevention and suppression.

Manufacturing of Extinguishing Powder of Expanded Glass from Recycling Automotive Glass Powder (자동차 폐유리 분말을 이용한 팽창유리 소화약제의 제조)

  • Duk-Woo, Jeon;Jung-Ho, Park;Yong-Kwon, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.547-552
    • /
    • 2022
  • In this study, we secured a technology for manufacturing expanded glass of uniform quality by using general tempered glass, that is, window glass, among automotive glass that is scrapped, and verified whether the manufactured expanded glass can be used for lithium battery fire suppression. The process of manufacturing expanded glass using waste glass is generally divided into Crushing → Milling → Granulation → Expansion → Cooling. With several trials a nd errors. It is obtained a yield of 0.5 ø mm to 2 ø mm spherical particles of 80 % or more. By comparing the surface analysis and physical properties, a more suitable sample was selected as a fire extinguishing agent for lithium batteries, and it was confirmed that the result of the adaptability test for lithium battery fire was satisfactory.

Fire resistance prediction of slim-floor asymmetric steel beams using single hidden layer ANN models that employ multiple activation functions

  • Asteris, Panagiotis G.;Maraveas, Chrysanthos;Chountalas, Athanasios T.;Sophianopoulos, Dimitrios S.;Alam, Naveed
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.769-788
    • /
    • 2022
  • In this paper a mathematical model for the prediction of the fire resistance of slim-floor steel beams based on an Artificial Neural Network modeling procedure is presented. The artificial neural network models are trained and tested using an analytical database compiled for this purpose from analytical results based on FEM. The proposed model was selected as the optimum from a plethora of alternatives, employing different activation functions in the context of Artificial Neural Network technique. The performance of the developed model was compared against analytical results, employing several performance indices. It was found that the proposed model achieves remarkably improved predictions of the fire resistance of slim-floor steel beams. Moreover, based on the optimum developed AN model a closed-form equation for the estimation of fire resistance is derived, which can prove a useful tool for researchers and engineers, while at the same time can effectively support the teaching of this subject at an academic level.