• Title/Summary/Keyword: fire resistance materials

Search Result 269, Processing Time 0.023 seconds

Study of Structural Stability for H-section Beams Made of Fire Resistant Steels (FR 490) at High Temperatures by Analytical Method (건축용 내화강재(FR 490) 적용 H형강 보부재의 고온내력 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.52-57
    • /
    • 2014
  • When structural elements of steel framed structures are exposed to fire situations, the structural stability begins to decrease due to dislocation of substantial. The increase of the beam length causes an additional stress and deflection. These can be serious factors to cause a severe failure of structures. To improve the fire resistance of beams, prevention of the heat from a fire by coating with fire protection material is essential for beams. The FR 490 was developed to enhance fire resistance compared with SM 490 steel. However, the fire resistance of FR 490 H-beams has not been evaluated by analysis method since it was developed. In this paper, materials properties in high temperature and a heat transfer and thermal stress theory were used in the evaluation of the fire resistance of FR490 H-beams. The fire resistance of FR490 steel beams was compared with that of SM490 beams. The comparison verified that the structural stability of FR490 beams at high temperature was superior to that of SM490 beams.

Criteria Proposal and Evaluation Technique for Fire Performance of TTX Interior Components (틸팅차량용 내장재 화염성능에 대한 기준 제시 및 평가 기술)

  • Lee Sang-Jin;Jeong Jong-Cheol;Cho Se-Hyun;Koo Dong-hae
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.43-46
    • /
    • 2004
  • Through investing the criteria and evaluation for fire performance of interior components, this paper introduce the testing items and requirements for Flammability, Smoke density, and Toxicity properties of TTX(Tilting Train eXpress) interior parts. Next time, all trains including TTX will be occupied the components with superior fire-resistance and the sensing and monitoring system for fire in train.

  • PDF

An Evaluation for the Fire Resistance of Concrete-Filled Steel Square Tube Columns under Constant Axial Loads (일정 축력을 받는 콘크리트충전 각형 강관기둥의 내화성능 평가)

  • Park, Su Hee;Ryoo, Jae Yong;Chung, Kyung Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.703-714
    • /
    • 2007
  • The aim of this research is to evaluate the fire resistance of concrete-filled steel square tube columns (square CFT columns) under constant axial loads by numerical analysis. The authors examined the experimental results on the fire resistance of concrete-filled steel square tube columns without fire protection. As the materials of CFT columns, steel of SPSR 400 grade and concrete of 27.5MPa and 37.8MPa strengths were used. The significant parameters were determined, such as load ratio, cross-sectional dimensions, and concrete strength. Detailed analytical simulations of fire resistance and axial deformation showed good agreement with the experimental observations. Therefore, this numerical analysis exhibited a reasonable estimation of fire resistance of the square CFT column. Results of the numerical parametric studies showed that the fire resistance of the CFT columns increased with the decrease of the concrete strength and the increase of the cross-sectional dimensions about the constant axial load ratio ($N/N_c$).

Comparative Study for Fire Protective Materials of Column According to Variance of Lengths (길이변화에 따른 기둥부재의 내화피복 비교연구)

  • Kwon, In-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.118-119
    • /
    • 2014
  • A fire in a steel framed building can decrease a structural stability and cause deformation. And the fire continues the building can be demolished. Therefore, every country requires fire resistance performance of structural elements. In case of column, fire protective thickness derived from a specific fire test using an horizontal furnace is allowed to apply any kinds of sections and lengths of column. However, the lengths and sections of the column in steel framed buildings are various. In this paper, to know the differences of fire performance of steel column according to variance of lengths, a maximum allowable stress, steel surface temperature history, deflection are calculated and the thickness of fire protective material for longer column(4700 mm) need to enforce about 10% more than shorter column (3500 mm).

  • PDF

Heat Conduction Analysis and Fire Resistance Capacity Evaluation of Reinforced Concrete Beams Strengthened by FRP (FRP로 보강된 철근콘크리트보의 열전도해석 및 내화성능 평가)

  • Lim, Jong-Wook;Park, Jong-Tae;Kim, Jung-Woo;Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • The object of this paper is to find the characteristics of fire proof materials through an analytical method and to suggest a proper approach for fire-proof design of reinforced concrete beam strengthened with fiber reinforced polymer (FRP). Heating tests for fire-proof materials were conducted and the thermal conductivities and specific heats of them were simulated through finite element analyses. In addition, a finite element analysis on the beam specimen strengthened with FRP under high temperature, which was conducted by previous researchers, was performed and the analytical result was compared with test result. And then the compatibility of the analytical approach was evaluated. Finally, the heat resistance characteristic of RC beam strengthened with FRP was analyzed by the proposed analytical method and the strength decrease of the beam due to the high temperature was evaluated. From the comparison with analytical and test result, it was found that the heat transfer from outside to inside through the fire-proof materials can be suitably simulated by using the proposed analytical approach.

An Experimental Study on Fire Resistance Performance of Curtain-Wall System with Steel-Aluminum Hybrid Frame (스틸-알루미늄 복합 프레임을 갖는 커튼월의 내화성능에 관한 실험적 연구)

  • Lee, Jae-Sung;Yim, Hyun-Chang;Cho, Bong-Ho;Kim, Heung-Yeal
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.104-111
    • /
    • 2011
  • Aluminum has been widely used as frame materials in the curtain walls. Recently, use of steel as a curtain wall frame is being considered due to its higher strength and thermal resistance than aluminum. In this study, fire tests on the basis of EN 13830 were performed with aluminum and steel-aluminum hybrid curtain walls. From the tests, fire resistance integrity, thermal insulation, and radiation properties were evaluated for both systems and compared. According to the test results, the steel-aluminum hybrid curtain wall showed better fire-performance than the typical aluminum curtain wall for the fire resistance integrity and radiation properties. Although, the fire resistance performance for the insulation property was 6 min for both the two frames, the collapses were occurred at 36 min for the steel-aluminum hybrid curtain wall and at 13 min for the aluminum hybrid curtain wall.

Synthesizing and Assessing Fire-Resistant Geopolymer from Rejected Fly Ash

  • An, Eung-Mo;Cho, Young-Hoon;Chon, Chul-Min;Lee, Dong-Gyu;Lee, Sujeong
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.253-263
    • /
    • 2015
  • Ordinary Portland cement is a widely favored construction material because of its good strength and durability and its reasonable price; however, spalling behaviour during fire exposure can be a serious risk that can lead to strength degradation or collapse of a building. Geopolymers, which can be synthesized by mixing aluminosilicate source materials such as metakaolin and fly ash, and alkali activators, are resistant to fire. Because the chemical composition of geopolymers controls the properties of the geopolyers, geopolymers with various Si:Al ratios were synthesized and evaluated as fire resistant construction materials. Rejected fly ash generated from a power plant was quantitatively analyzed and mixed with alkali activators to produce geopolymers having Si:Al ratios of 1.5, 2.0, and 3.5. Compressive strength of the geopolymers was measured at 28 days before and after heating at $900^{\circ}C$. Geopolymers having an Si:Al ratio of 1.5 presented the best fire resistance, with a 44% increase of strength from 29 MPa to 41 MPa after heating. This material also showed the least expansion-shrinkage characteristics. Geopolymer mortar developed no spalling and presented more than a 2 h fire resistance rating at $1,050^{\circ}C$ during the fire testing, with a cold side temperature of $74^{\circ}C$. Geopolymers have high potential as a fire resistant construction material in terms of their increased strength after exposure to fire.

Fire Resistant Regulation Status and Activation Plan of Domestic Modular Construction (국내 모듈러 건축의 내화구조 제도 현황 및 활성화 방안)

  • Choi, Yun-Jeong;An, Jae-Hong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.673-680
    • /
    • 2022
  • Modular construction is recognized as a construction method with various advantages, such as shortening the construction duration, achieving quality control through factory production, ease of maintenance, and reduced construction costs due to reduced weight of materials. However, despite efforts by the modular industry and government to activate modular construction, it has rarely been established in the domestic market. Currently, there are technical limitations to the modular construction fire resisting technology applied to general buildings. The lack of access to modular construction fire resistance regulation is considered a major factor. In this study, the current status and problems with modular construction fire resistance regulation, a significant hindrance factor, were considered to activate modular construction. This study is intended to present a direction for institutional improvement in modular construction fire resistance and a direction for research and development.

Fire Resistance of Concrete-Filled Circular Steel Tube Columns under Central Axial Loads (일정 축력을 받는 콘크리트충전 원형 강관기둥의 내화성능 평가)

  • Park, Su Hee;Song, Kyung Chul;Ryoo, Jae Yong;Chung, Kyung Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.655-663
    • /
    • 2008
  • In this research, the fire resistance of Concrete-Filled Circular Steel Tube Columns (CFT) was evaluated by numerical analysis. As the materials of CFT columns, the steel of SPSR 400 grade and the concrete of 27.5MPa, 37.8MPa strengths were used. Significant parameters,such as concrete strength, axial load, and cross-sectional dimensions were determined. To verify the accuracy of the numerical analysis,the analysis results were compared with the former experiment results. The effect of the fire resistance time, axial load ratio, cross-sectional dimensions and concrete strength was evaluated by comparison with the fire resistance of the square CFT columns. This research showed that the structural behavior and fire resistance from the findings of numerical parametric studies showed a similarity to that of the experimental results. Therefore, this numerical analysis is reasonable in estimating the fire resistance of the circular CFT column.

An Experimental Study on the Performance Evaluation of Repair Method of RC Structure Using Fire Resistance Engineered Cementitious Composites(FR-ECC) (고인성 내화·보수 모르타르를 활용한 RC구조물 보수공법의 성능평가에 관한 실험적 연구)

  • Kim, Jeong-Hee;Kim, Jae-Whan;Park, Sun-Gyu;Kwon, Young-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.88-96
    • /
    • 2009
  • In this Study, FR-ECC(Fire Resistance Engineered Cementitious Composites) in which at same time it can improve the endurance and fire-resistance efficiency of a Structure was developed, and the experimental study such as thermal characteristic, Fire-resistance efficiency, and etc was performed for using FR-ECC as the repair materials for building and civil Structure. Moreover, it was evaluated about the field applicability of FR-ECC. As a result, FR-ECC is superior to the existence fire resistance repair mortar in strength and durability property. Also, FR-ECC was exposed to have the characteristic of being excellent than existence fire resistance mortar in the field applicability.