• Title/Summary/Keyword: fire point

Search Result 638, Processing Time 0.034 seconds

Measurement and Prediction of Fire and Explosion Properties of n-Ethylanilne (노말에틸아닐린의 화재 및 폭발 특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.474-478
    • /
    • 2018
  • For process safety, fire and explosion characteristics of combustible materials handled at industrial fields must be available. The combustion properties for the prevention of the accidents in the work place are flash point, fire point, explosion limit, and autoignition temperature (AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. In the chemical industries, n-ethylaniline which is widely used as a raw material of intermediate products and rubber chemicals was selected. For safe handling of n-ethyl aniline, the flash point, the fire point and the AIT were measured. The lower explosion limit (LEL)of n-ethylaniline was calculated using the lower flash point obtained in the experiment. The flash points of n- ethylaniline by using the Setaflash and Pensky-Martens closed-cup testers measured $77^{\circ}C$ and $82^{\circ}C$, respectively. The flash points of n-ethylaniline using the Tag and Cleveland open cup testers are measured $85^{\circ}C$ and $92^{\circ}C$, respectively. The AIT of the measured n-ethyl aniline by the ASTM E659 apparatus was measured at $396^{\circ}C$. The LEL of n-ethylaniline measured by Setaflash closed-cup tester at $77^{\circ}C$ was calculated to be 1.02 vol%. In this study, it was possible to predict the LEL by using the lower flash point of n-ethylaniline measured by closed-cup tester. The relationship between the ignition temperature and the ignition delay time of the n-ethylaniline proposed in this study makes it possible to predict the ignition delay time at different ignition temperatures.

Measurement and Prediction of Combustion Characteristics of DEC(Diethyl Carbonate) + DMMP(Dimethyl Methylphosphonate) for Secondary Battery Solutions (2차전지 용액인 DEC(Diethyl Carbonate) + DMMP(Dimethyl Methylphosphonate)계의 연소특성치 측정 및 예측)

  • Y. S. Jang;Y. R. Jang;J. J. Choi;D. J. Jeon;Y. G. Kim;D. M. Ha
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.5
    • /
    • pp.8-14
    • /
    • 2023
  • Lithium ions can induce the thermal runaway phenomenon and lead to reignition due to electrical, mechanical, and environmental factors such as high temperature, smoke generation, explosions, or flames, which is extremely likely to create safety concerns. Therefore, one of the ways to improve the flame retardancy of the electrolyte is to use a flame-retardant additive. Comparing the associated characteristic value of existing substances with the required experimental value, it was found that these values were either considerably different or were not documented. It is vital to know a substance's combustion characteristic values, flash point, explosion limit, and autoignition temperature (AIT) as well as its combustion characteristics before using it. In this research, the flash point and AIT of materials were measured by mixing a highly volatile and flammable substance, diethyl carbonate (DEC), with flame-retardant dimethyl methylphosphonate (DMMP). The flash point of DEC, which is a pure substance, was 29℃, and that for DMMP was 65℃. Further, the lower explosion limit calculated using the measured flash point of DEC was 1.79 Vol.%, while that for DMMP was 0.79 Vol.%. The AIT was 410℃ and 390℃ for DEC and DMMP, respectively. In particular, since the AIT of DMMP has not been discussed in any previous study, it is necessary to ensure safety through experimental values. In this study, the experimental and regression analysis revealed that the average absolute deviation (ADD) for the flash point of the DEC+DMMP DEC+DMMP system is 0.58 sec and that the flash point tends to increase according to changes in the composition employed. It also revealed that the AAD for the AIT of the mixture was 3.17 sec and that the AIT tended to decrease and then increase based on changes in the composition.

Investigating the Effect of Prior Damage on the Post-earthquake Fire Resistance of Reinforced Concrete Portal Frames

  • Ronagh, Hamid Reza;Behnam, Behrouz
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.209-220
    • /
    • 2012
  • Post-earthquake fire (PEF) can lead to a rapid collapse of buildings that have been partially damaged as a result of a prior earthquake. Almost all standards and codes for the design of structures against earthquake ignore the risk of PEF, and thus buildings designed using those codes could be too weak when subjected to a fire after an earthquake. An investigation based on sequential analysis inspired by FEMA356 is performed here on the immediate occupancy (IO), life safety (LS) and collapse prevention (CP) performance levels of two portal frames, after they are pushed to arrive at a certain level of displacement corresponding to the mentioned performance level. This investigation is followed by a fire analysis of the damaged frames, examining the time taken for the damaged frames to collapse. As a point of reference, a fire analysis is also performed for undamaged frames and before the occurrence of earthquake. The results indicate that while there is minor difference between the fire resistances of the fire-alone situation and the frames pushed to the IO level of performance, a notable difference is observed between the fire-alone analysis and the frames pushed to arrive at LS and CP levels of performance and exposed to PEF. The results also show that exposing only the beams to fire results in a higher decline of the fire resistance, compared to exposing only the columns to fire. Furthermore, the results show that the frames pushed to arrive at LS and CP levels of performance collapse in a global collapse mode laterally, whereas at the IO level of performance and fire-alone situation, the collapse mechanism is mostly local through the collapse of beams. Whilst the investigation is conducted for a certain class of portal frames, the results confirm the need for the incorporation of PEF into the process of analysis and design, and provide some quantitative measures on the level of associated effects.

Validation of FDS for Pool Fire in Three Rooms Connected to Ventilation Network (환기가 제한된 세 개 격실에서 Pool Fire에 대한 FDS 검증분석)

  • Bae, Young-Bum;Lee, Sang-Kyu;Shin, Byung-Soo;Kim, Nam-Seok;Keum, O-Hyun;Park, Jong-Seok
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.9-15
    • /
    • 2011
  • This study aims to validate predictive capabilities of FDS for the pool fire in three rooms connected to ventilation network. The three rooms in real scale fire test facility are configured to be similar to that of nuclear power plant in size, ventilation condition, construction material, etc. Basically three rooms are confined to the other area except two open doors and two ventilation duct in each room. The real scale fire test was conducted with these conditions and the predictive capabilities of FDS will be validated by comparing FDS simulation results with experimental data from the temperature, heat flux, and concentration point of view. This study concludes that temperature from FDS is about 25 % lower deviation from the experiment, and heat flux from FDS is about 5% deviation.

  • PDF

Fire Cause Analysis of Local Heating on Carbon Type Hot Wire Electric Pad (카본열선을 사용하는 전기장판의 국부가열에 의한 화재원인 분석)

  • Song, Jae-Yong;Kim, Jin-Pyo;Nam, Jung-Woo;Sa, Seung-Hun
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.104-108
    • /
    • 2010
  • This paper describes electrical fire on electric pad using carbon type hot wires. A carbon type hot wires electric pad is virtually impossible to connect hot wire as a method of electrical welding or soldering. In order to connect between hot wires, that has to splice carbon type material connector. If junction of hot wires was occurrence of poor connection on electric pad, it increase contact resistance on this junction point. With increasing contact resistance, junction of hot wires on electric pad generates local heating and finally leads to electrical fire. In this paper, we analyzed shape of damage in hot wires caused by electrical local heating and investigated fire cause on electric pad using by carbon type hot wires.

Study on Fire Risk of Air Conditioner through Fire Cases (화재사례를 통한 에어컨의 화재위험성 연구)

  • Choi, Seung-Bok;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.70-77
    • /
    • 2017
  • As the quality of live gets better, the frequency of using air conditioner is along drastically increasing. On that matter, setting up measures of preventing increasing fire cases has been required. 43,413 fire cases occurred in last 2016, the cases occurred by electricity account for about 20%(8,655 cases). Among the electricity cases, the amount of cases occurred with air conditioner issues covers 1.5%; causes of the fire incidents vary, including incomplete contacts, short circuits, tracking, and such. In this study, we intend to investigate the case of ignition at the connection point where the power cord connected to the outdoor unit is arbitrarily connected during the air conditioner installation process, and to propose preventive measures against the cause in order to reduce the damage of life as well as the property from electric fire incidents.

Scenarios for Effective Fire Fighting Operations during Tunnel Fires (도로터널 화재시 효과적인 소방활동전략 수립을 위한 시나리오 연구)

  • Kim, Hak kuen;Lee, Ji-hee
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.107-116
    • /
    • 2017
  • Fires in tunnels are an international concern and fatal accidental fires in tunnels seem to occur on annual. They have the potential to become much worse int the future as more and longer tunnels are constructed and as traffic densities increase. This is a serious problem. The main purpose of this study is to develop operational procedures for fire brigades in road tunnel fires. This study discussed the past to see what can be learned from the incidents that have already done in tunnels. 73 cases of road tunnel fires domestic and outside of Korea were investigated and classified into 4 incident categories. Among them, 4 tunnel fires are highlighted, focusing on the activities of fire brigades and operation. Regarding the establishment of the strategies for fire fighting, 6 kinds of fire scenario curves have been deducted with regard to the relation between intervention time and heat release rate. It made the choice from the defensive or aggressive fire fighting activities depending on two criteria i.e. response limit and maximum response time. Road Tunnel Classification models can be useful when a fire brigade evaluates fire risk levels in the tunnels under its jurisdiction from the firefighting point of view and sets up preventive measures.

Measurement and Prediction of the Flash Point for the Flammable Binary Mixtures using Tag Open-Cup Apparatus (Tag식 개방계 장치를 이용한 가연성 이성분계 혼합물의 인화점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sungjin;Song, Young-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.181-185
    • /
    • 2005
  • The flash point is one of the most important combustible properties used to determine the potential for fire and explosion hazards of industrial material. An accurate knowledge of the flash point is important in developing appropriate preventive and control measures in industrial fire protection. The flash points for the n-butanol+n-propionic acid and n-propanol+n-propionic acid systems were measured by using Tag open-cup apparatus(ASTM D 1310-86). The experimental data were compared with the values calculated by the laws of Raoult and van Laar equation. The calculated values based on the van Laar equation were found to be better than those based on the Raoult's law.

A Study of Characteristics such as Spontaneous Ignition, Flash Point and Explosion Behavior of Methyl Ethyl Ketone Peroxide in ender to Determine its Hazardousness (Methyl Ethyl Ketone Peroxide의 위험성을 판단하기 위한 자연발화, 인화점 및 폭발거동에 관한 기초 연구)

  • Jung, Doo-Kyun;Choi, Jae-Wook;Lee, In-Sik;Lim, Woo-Sub;Kim, Dong-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.78-83
    • /
    • 2005
  • In this study, the evaluate characteristics of fire and explosion of MEK-PO are subjected to spontaneous ignition, flash point and explosion hazard. The minimum ignition temperature and instantaneous ignition temperature for MEK-PO were $188.5^{\circ}C\;and\;230^{\circ}C\;at\;225{\mu}L$. In addition The flash point for MEK-PO was obtained at $49^{\circ}C$. Furthermore, the maximum explosion pressure and the maximum explosion pressure rising velocity: using MCPVT (mini cup pressure vessel tester) were $10.82kgf/cm^2\;and\;33.72kgf/cm^2{\cdot}s$.

Numerical Study on Atmospheric Dispersion and Fire Possibility in Toluene Leakage (톨루엔 누출 시 대기확산 및 화재가능성에 관한 수치해석 연구)

  • Ko, Jae Sun;Kim, Joo-Seok
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • This study examined the risk of accidents when handling hazardous materials in hazardous materials storage facilities without safety facilities. In the case of illegal dangerous cargo containers, the burning rate is very fast in the case of fire, which leads to explosions, that are damaging and difficult to control. In addition, accidents that occur in flammable liquid hazardous materials are caused mostly by accidents that occur in the space due to leakage. Therefore, the variables that affect these accidents were derived and the influence of these variables was investigated. Numerical and computational fluid dynamics programs were used to obtain the following final results. First, when a flammable liquid leaks into a specific space, it is influenced by temperature and relative humidity until a certain concentration (lower limit of combustion) is reached. In the case of temperature, it was found that the reaching time was shorter than the flash point In addition, the effect of variables on pool fire accidents of leakage tanks is somewhat different, but the variables that have the largest influence are the wind speed. Therefore, it is expected that the results of this study will be used as basic data for similar numerical analysis and it will provide useful numerical information about the accidental leakage of hazardous materials under various research conditions.