• Title/Summary/Keyword: fire in tunnel

Search Result 444, Processing Time 0.025 seconds

Analysis of Interaction Between Recirculating Flow Near The Jet Fan and The Backlayer of Smoke in a Road Tunnel (도로터널에서 제트팬 근처의 재순환유동과 연기 역류현상의 상호작용 분석)

  • Kim, Chang-Kyun;Ryu, Jin-Woong;Kim, Sung-Joon
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.191-201
    • /
    • 2005
  • A numerical analysis was done for a tunnel fire in a 1000m road tunnel. A cartesian coordinate was adopted to make a computational grid sytem which has 448,000 computational cells. A transient flow phenomena in the tunnel was simulated by the commercial code of PHEONICS from the ignition of fire to 600 seconds by the interval of 100 seconds. Total computational time of about 44 hours was required to get a convered solution in each time step. The purpose of this research is to analyze of the backlayering pheonomena and recirculation flow in a tunnel. The compuational results say that the backlayering does not happens near the fire of vehicle in this case because the vehicle fire is located at the outside of recirculation zone of flow ocuured near the jet fan. In this research, onset of backlayering pheonomena could be escaped if jet fan is set 95m in front of the the fire of vehicle.

  • PDF

Study on Flow and Smoke Behaviors on in Longitudinal Tunnel (장대 터널에서의 배연방식에 따른 기류 및 연기거동 연구)

  • Kim, Won-Tae;Choi, Man-Yong;Park, Jeong-Hak;Chae, Kyung-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1521-1527
    • /
    • 2009
  • This study is aimed to analyze the floe patterns and thermal characteristics by computer simulation under the variations of fire strength for the logitudinal tunnel, from which flow and heat distributions are predicted in the longitudinal tunnel. Through the results of numerical computations, followings are found; one is that the volume flow rate is discontinuously increasing as closer to fire location, and the other is that a critical design to get the faster flow rate is required because of existence of backlayer flow for the high fire strength in view of safety for the people in fire of the tunnel.

  • PDF

A study of the HRR and fire propagation phenomena for the fire safety design of deep road tunnel (대심도터널 화재 안전 설계를 위한 승용차의 열방출률 및 화재전파 특성에 관한 연구)

  • Yoo, Yong-Ho;Kweon, Oh-Sang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.321-328
    • /
    • 2010
  • The study performed an actual fire experiment in order to propose the heat release rate of automobile that is the most basic architectural element for the fire safety design in a tunnel, whose importance has been recognized as the underground traffic tunnels are planned in Korean metropolitan cities. The heat release rate of a van is measured by the large scale calorimeter, in which the law of oxygen consumption is applied, and the fire expansion characteristics in a tunnel by placing two passenger cars nearby one another in the tunnel. As the results, the heat release rate of the van was revealed to be 5.9 MW, and carbon monoxide was emitted 482 ppm at a maximum. In case of two passenger car experiment for the fire expansion characteristics, the adjacent car was ignited about 3 minutes 30 seconds after the fire occurrence, and the complete fire was developed after 15 minutes. The maximum heat release was 9 MW. The results from the actual fire experiment can be an important input data for future quantitative analysis as well as an element applicable to a tunnel disaster preventive equipment design.

Sensing Characteristics of Fire Detectors in Railway Tunnel by Using Numerical Analysis (수치해석을 이용한 화재감지기 철도터널 화재 감지특성 연구)

  • Park, Won-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7964-7970
    • /
    • 2015
  • In enclosed areas such as railway tunnels, the heat and smoke generated by a fire can pose a tremendous risk to the life of passengers. To prevent or mitigate such scenarios, fire detectors are installed for early fire detection. This numerical study is preformed for establishing the method of detecting performance of fire detectors installed on railway tunnels. Numerical analysis are conducted using the fire dynamics simulator, developed by the NIST. The temperature of the tunnel walls is determined using the assumed exterior structure of the tunnel. In addition, the detection times of detectors installed at different locations in the tunnel are obtained for different sizes of the fire source, and the results are compared and analyzed.

The Temperature Distribution and the Smoke Flow Behaviour During Road Tunnel Fire (도로터널내 화재시 온도분포 및 연기 유동 분석 연구)

  • Choi, Tae-Hee;Yeun, Young-Pyo;Yun, Chul-Uk;Kim, Myung-Bae;Choi, Jun-Seok;Lee, Seung-Ho;Kim, Nag-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.1
    • /
    • pp.37-43
    • /
    • 2002
  • Recently, the construction of tunnels longer than one kilometer has increased rapidly. Considering characteristic of limiting structure of longer tunnel, if fires inside tunnel broke out because of vehicle incidents, the catastroph would have high possibility to take place due to toxic smoke and heat of fire. In case of highway tunnel, safety facilities which can cope with tunnel fire are installed in the tunnel but according to rapid increase of heavy good traffic, dangerous goods and enlargement of tunnel magnitude, the research has to carry out about heat fluxes and smoke behaviour during tunnel fire. Therefore, through full-sized fire experiment the paper analyzed temperature distribution, wind velocity, smoke behaviour during tunnel fire.

  • PDF

Review of fire resistance evaluation and fire resistance method of concrete segment lining for fire in tunnel (터널 내 화재발생에 대한 콘크리트 세그먼트 라이닝의 내화성 평가 및 내화방법에 대한 고찰)

  • Moorak Son;Juhyun Cheon;Youngkeun Cho;Bumjoo Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.121-139
    • /
    • 2023
  • Various tunnels such as road, subway, and railway are under construction and operation. Various types of linings are used for structural stability of tunnel structures, and concrete segment linings are mainly installed in TBM tunnel construction. In this paper, when a fire occurs in a tunnel, the impact on the concrete segment lining, which is the structure in the tunnel, and related standards, fire resistance evaluation and fire resistance method are investigated through literature review and related contents are presented. Through this, it is intended to provide an information for practitioners to secure the safety of concrete segment linings against tunnel fires.

A Study on Analysis of Passenger Safety in Railroad Tunnel Fire - Using Simulation - (시뮬레이션을 이용한 철도터널 화재 사고의 승객 안전도 분석)

  • Kim, Dong-Jin;Moon, Seong-Am;Kim, Dong-Gun;Kim, Kyung-Sup;Jang, Young-Joon;Jung, Woo-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.2 s.39
    • /
    • pp.131-136
    • /
    • 2007
  • In this paper, the methodology to predict the number of deaths and possible fire propagation scenarios will be described in case of fire on a train in a tunnel. We use a probabilistic analysis method for the evaluation of possibility for each scenario and the deaths tolls are calculated with the help of the passenger evacuation simulation program. The resulting safety of passengers is displayed on a F/N graph, which could be used in part as a guideline to predict the safety level of the tunnel in fire.

A Study on Fire Safety Measure for Korean Utility Tunnels Based on Analysis of Fire Safety Performance for Utility Tunnel in Advanced Countries (해외 공동구의 방재성능분석을 통한 국내 공동구에 적합한 방재대책에 관한 연구)

  • 박형주;김상욱
    • Fire Science and Engineering
    • /
    • v.15 no.4
    • /
    • pp.71-77
    • /
    • 2001
  • The pipes and cables buried below ground which may have helped to improved city landscapes is becoming direct and indirect cause for various disaster in Korea due to potential possibility of fire. Various types of fire in utility tunnels should be analysed in order to improve its fire safety level, therefore mail problems and shortcomings are checked out as a result of this analysis. By performing both tunnel fire risk analysis and fire safety level comparison in advanced countries, effective measure and approach to required standardization may be presented to bath tunnel structure and its containing cables in order to diminished up to a desirable rate in a near future.

  • PDF

Comparison of Two Different Smoke Extraction Schemes of Transversely Ventilated Tunnel Fire

  • Rie, Dong-Ho;Kim, Hyung-Taek;Yoo, Ji-Oh;Shin, Hyun-Jun;Yoon, Sung-Wook
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.30-35
    • /
    • 2005
  • In case of tunnel fire, one of the most effective facilities to save lives is the smoke control system. In this study, two different smoke extraction schemes of transversely ventilated tunnel were compared. One is the smoke extraction using the fixed exhaust ports on the false ceiling to achieve the uniform and distributed smoke extraction (uniform exhaust). The other is that using the remote controlled smoke extraction where only vents close to the fire is opened whereas the others are closed to enhance the limitation of the smoke spread (localized exhaust). A number of numerical simulations were performed to find out the optimal smoke extraction rate at each smoke extraction scheme to allow the tunnel users to escape to the safe area without endangering their lives by smoke.

Development of remote control automatic fire extinguishing system for fire suppression in double-deck tunnel (복층터널 화재대응을 위한 원격 자동소화 시스템 개발 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Yangkyun;Park, Byoungjik;Kim, Whiseong;Park, Sangheon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.167-175
    • /
    • 2019
  • To effectively deal with the fire in tunnel which is mostly the vehicle fire, it's more important to suppress the fire at early stage. In urban tunnel, however, accessibility to the scene of fire by the fire fighter is very limited due to severe traffic congestion which causes the difficulty with firefighting activity in timely manner and such a problem would be further worsened in underground road (double-deck tunnel) which has been increasingly extended and deepened. In preparation for the disaster in Korea, the range of life safety facilities for installation is defined based on category of the extension and fire protection referring to risk hazard index which is determined depending on tunnel length and conditions, and particularly to directly deal with the tunnel fire, fire extinguisher, indoor hydrant and sprinkler are designated as the mandatory facilities depending on category. But such fire extinguishing installations are found inappropriate functionally and technically and thus the measure to improve the system needs to be taken. Particularly in a double-deck tunnel which accommodates the traffic in both directions within a single tunnel of which section is divided by intermediate slab, the facility or the system which functions more rapidly and effectively is more than important. This study, thus, is intended to supplement the problems with existing tunnel life safety system (fire extinguishing) and develop the remote-controlled automatic fire extinguishing system which is optimized for a double-deck tunnel. Consequently, the system considering low floor height and extended length as well as indoor hydrant for a wide range of use have been developed together with the performance verification and the process for commercialization before applying to the tunnel is underway now.