• Title/Summary/Keyword: fire forecasting

Search Result 38, Processing Time 0.026 seconds

Spatio-temporal enhancement of forest fire risk index using weather forecast and satellite data in South Korea (기상 예보 및 위성 자료를 이용한 우리나라 산불위험지수의 시공간적 고도화)

  • KANG, Yoo-Jin;PARK, Su-min;JANG, Eun-na;IM, Jung-ho;KWON, Chun-Geun;LEE, Suk-Jun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.116-130
    • /
    • 2019
  • In South Korea, forest fire occurrences are increasing in size and duration due to various factors such as the increase in fuel materials and frequent drying conditions in forests. Therefore, it is necessary to minimize the damage caused by forest fires by appropriately providing the probability of forest fire risk. The purpose of this study is to improve the Daily Weather Index(DWI) provided by the current forest fire forecasting system in South Korea. A new Fire Risk Index(FRI) is proposed in this study, which is provided in a 5km grid through the synergistic use of numerical weather forecast data, satellite-based drought indices, and forest fire-prone areas. The FRI is calculated based on the product of the Fine Fuel Moisture Code(FFMC) optimized for Korea, an integrated drought index, and spatio-temporal weighting approaches. In order to improve the temporal accuracy of forest fire risk, monthly weights were applied based on the forest fire occurrences by month. Similarly, spatial weights were applied using the forest fire density information to improve the spatial accuracy of forest fire risk. In the time series analysis of the number of monthly forest fires and the FRI, the relationship between the two were well simulated. In addition, it was possible to provide more spatially detailed information on forest fire risk when using FRI in the 5km grid than DWI based on administrative units. The research findings from this study can help make appropriate decisions before and after forest fire occurrences.

Developing Korean Forest Fire Occurrence Probability Model Reflecting Climate Change in the Spring of 2000s (2000년대 기후변화를 반영한 봄철 산불발생확률모형 개발)

  • Won, Myoungsoo;Yoon, Sukhee;Jang, Keunchang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.199-207
    • /
    • 2016
  • This study was conducted to develop a forest fire occurrence model using meteorological characteristics for practical forecasting of forest fire danger rate by reflecting the climate change for the time period of 2000yrs. Forest fire in South Korea is highly influenced by humidity, wind speed, temperature, and precipitation. To effectively forecast forest fire occurrence, we developed a forest fire danger rating model using weather factors associated with forest fire in 2000yrs. Forest fire occurrence patterns were investigated statistically to develop a forest fire danger rating index using times series weather data sets collected from 76 meteorological observation centers. The data sets were used for 11 years from 2000 to 2010. Development of the national forest fire occurrence probability model used a logistic regression analysis with forest fire occurrence data and meteorological variables. Nine probability models for individual nine provinces including Jeju Island have been developed. The results of the statistical analysis show that the logistic models (p<0.05) strongly depends on the effective and relative humidity, temperature, wind speed, and rainfall. The results of verification showed that the probability of randomly selected fires ranges from 0.687 to 0.981, which represent a relatively high accuracy of the developed model. These findings may be beneficial to the policy makers in South Korea for the prevention of forest fires.

A Maryblyt Study to Apply Integrated Control of Fire Blight of Pears in Korea (배 화상병 종합적 방제를 위한 Maryblyt 활용 방안 연구)

  • Kyung-Bong, Namkung;Sung-Chul, Yun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.305-317
    • /
    • 2022
  • To investigate the blossom infection risk of fire blight on pears, the program Maryblyt has been executed from 2018 to 2022 based on meteorological data from central-Korean cities where fire blight has occurred as well as from southern Korean cities where the disease has not yet occurred. In the past five years, years with the highest risk of pear blossom blight were 2022 and 2019. To identify the optimal time for spraying, we studied the spray mode according to the Maryblyt model and recommend spraying streptomycin on the day after a "High" warning and then one day before forecasted precipitation during the blossom period. Maryblyt also recommends to initiate surgical controls from mid-May for canker blight symptoms on pear trees owing to over-wintering canker in Korea. Web-cam pictures from pear orchards at Cheonan, Icheon, Sangju, and Naju during the flowering period of pear trees were used for comparing real data and constructing a phenological model. The actual starting dates of flowering at southern cities such as Sangju and Naju were consistently earlier than those calculated by the model. It is thus necessary to improve the forecasting model to include field risks by recording the actual flowering period and the first day of the fire blight symptoms, according to the farmers, as well as mist or dew-fall, which are not easily identifiable from meteorological records.

Future Changes of Wildfire Danger Variability and Their Relationship with Land and Atmospheric Interactions over East Asia Using Haines Index (Haines Index를 이용한 동아시아 지역 산불 확산 위험도 변화와 지표-대기 상호관계와의 연관성 연구)

  • Lee, Mina;Hong, Seungbum;Park, Seon Ki
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.131-141
    • /
    • 2013
  • Many studies have related the recent variations of wildfire regime such as the increasing number of occurrances, their patterns and timing changes, and the severity of their extreme cases with global warming. However, there are only a few numbers of wildfire studies to assess how the future wildfire regime will change in the interactions between land and atmosphere with climate change especially over East Asia. This study was performed to estimate the future changing aspect of wildfire danger with global warming, using Haines Index (HI). Calculated from atmospheric instability and dryness, HI is the potential of an existing fire to become a dangerous wildfire. Using the Weather Research and Forecasting (WRF) model, two separated 5-year simulations of current (1995~1999) and far future (2095~2099) were performed and analyzed. Community Climate System Model 3 (CCSM3) model outputs were utilized for the model inputs for the past and future over East Asia; future prediction was driven under the IPCC A1B scenario. The results indicate changes of the wildfire danger regime, showing overall decreasing the wildfire danger in the future but intensified regional deviations between north and south. The overall changes of the wildfire regime seems to stem from atmospheric dryness which is sensitive to soil moisture variation. In some locations, the future wildfire danger overall decreases in summer but increases in winter or fall when the actual fire occurrence are generally peaked especially in South China.

Market Power in the Korea Wholesale Electricity Market (우리나라 전력시장에서의 시장지배력 행사)

  • Kim, Hyun-Shil;Ahn, Nam-Sung
    • Korean System Dynamics Review
    • /
    • v.6 no.1
    • /
    • pp.99-123
    • /
    • 2005
  • Although the generation market is competitive, the power market is easily exercised the market power by one generator due to its special futures such as a limited supplier, large investment cost, transmission constraints and loss. Specially, as Korea Electric industry restructuring is similar US competitive wholesale electricity market structure which discovered the several evidences of market power abuse, when restructuring is completed the possibility that market power will be exercised is big. Market power interferes with market competitions and efficiency of system. The goal of this study is to investigate the market price effects of the potential market power and the proposed market power mitigation strategy in Korean market using the forecasting wholesale electricity market model. This modeling is developed based on the system dynamics approach. it can analyze the dynamic behaviors of wholesale prices in Korean market. And then it is expanded to include the effect of market condition changed by 'strategic behavior' and 'real time pricing.' This model can generate the overall insights regarding the dynamic impact of output withholding by old gas fire power plant bon as a marginal plant in Korean market at the macro level. Also it will give the energy planner the opportunity to create different scenarios for the future for deregulated wholesales market in Korea.

  • PDF

Some Problems of e-Learning Market in Korea (최근 우리나라 e-Learning 시장의 주요 동향 및 향후 전망)

  • Yoon, Young-Han
    • International Commerce and Information Review
    • /
    • v.9 no.2
    • /
    • pp.103-120
    • /
    • 2007
  • The knowledge based economy requires more and more people to learn new knowledge and skills in a timely and effective manner. These needs and new technology such as computer and Internet are fueling a transition in e-learning. According to specialist's opinion, imagination experience studying is generalized, and learning environment that language barrier by studying, multi-language studying Machine that experience past things that disappear through simulation, and travel area, and experience future changed state disappears is forecasting to come. This is previewing finally that it may become future education that education and IT, element of entertainment is combined. Already, became story that argument for party satellite of e-Learning existence passes one season already. e-Learning is utilized already in all educations that we touch by effectiveness by corporation's competitive power improvement and implement of lifelong education in educational institutions through present e-Learning. It is obvious that when see from our viewpoint which is defining e-Learning by one industry and rear by application to education as well as one new growth power about these, e-Learning industry becomes very important means that can solve dilemma of growth real form. Only, special quality of digital industry that e-Learning is being same with other digital industry and repeat putting out a fire rapidly, and is repeating sudden change that these evolution is not gradual growth of accumulation and improvement of technology that is appearing consider need to. In the meantime, we need to observe about evolution of Information Technology. Because there is some scholars who e-Learning's concept foresees to evolve by u-Learning.(although, a person who see that these concept is not more in marketing terminology by some scholars' opinion is). This u-Learning's concept means e-Learning that take advantage of ubiquitous technology as Ubiquitous-Learning's curtailment speech. Ubiquitous, user means Information-Communication surrounding that can connect to network freely regardless of place without feeling network or computer. There is controversy about introduction time regarding these direction, but e-Learning is judged to evolve by u-Learning necessarily. Because keep in step and age that study all contents that learner wants under environment of 3A (any time, any whrer, any device) by individual order thoroughly is foreseen to come in ubiquitous learning environment that approach more festinately.

  • PDF

Sensitivity Analysis of Meteorology-based Wildfire Risk Indices and Satellite-based Surface Dryness Indices against Wildfire Cases in South Korea (기상기반 산불위험지수와 위성기반 지면건조지수의 우리나라 산불발생에 대한 민감도분석)

  • Kong, Inhak;Kim, Kwangjin;Lee, Yangwon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.107-120
    • /
    • 2017
  • There are many wildfire risk indices worldwide, but objective comparisons between such various wildfire risk indices and surface dryness indices have not been conducted for the wildfire cases in Korea. This paper describes a sensitivity analysis on the wildfire risk indices and surface dryness indices for Korea using LDAPS(Local Analysis and Prediction System) meteorological dataset on a 1.5-km grid and MODIS(Moderate-resolution Imaging Spectroradiometer) satellite images on a 1-km grid. We analyzed the meteorology-based wildfire risk indices such as the Australian FFDI(forest fire danger index), the Canadian FFMC(fine fuel moisture code), the American HI(Haines index), and the academically presented MNI(modified Nesterov index). Also we examined the satellite-based surface dryness indices such as NDDI(normalized difference drought index) and TVDI(temperature vegetation dryness index). As a result of the comparisons between the six indices regarding 120 wildfire cases with the area damaged over 1ha during the period between January 2013 and May 2017, we found that the FFDI and FFMC showed a good predictability for most wildfire cases but the MNI and TVDI were not suitable for Korea. The NDDI can be used as a proxy parameter for wildfire risk because its average CDF(cumulative distribution function) scores were stably high irrespective of fire size. The indices tested in this paper should be carefully chosen and used in an integrated way so that they can contribute to wildfire forecasting in Korea.

A Case Study on Forecasting Inbound Calls of Motor Insurance Company Using Interactive Data Mining Technique (대화식 데이터 마이닝 기법을 활용한 자동차 보험사의 인입 콜량 예측 사례)

  • Baek, Woong;Kim, Nam-Gyu
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.99-120
    • /
    • 2010
  • Due to the wide spread of customers' frequent access of non face-to-face services, there have been many attempts to improve customer satisfaction using huge amounts of data accumulated throughnon face-to-face channels. Usually, a call center is regarded to be one of the most representative non-faced channels. Therefore, it is important that a call center has enough agents to offer high level customer satisfaction. However, managing too many agents would increase the operational costs of a call center by increasing labor costs. Therefore, predicting and calculating the appropriate size of human resources of a call center is one of the most critical success factors of call center management. For this reason, most call centers are currently establishing a department of WFM(Work Force Management) to estimate the appropriate number of agents and to direct much effort to predict the volume of inbound calls. In real world applications, inbound call prediction is usually performed based on the intuition and experience of a domain expert. In other words, a domain expert usually predicts the volume of calls by calculating the average call of some periods and adjusting the average according tohis/her subjective estimation. However, this kind of approach has radical limitations in that the result of prediction might be strongly affected by the expert's personal experience and competence. It is often the case that a domain expert may predict inbound calls quite differently from anotherif the two experts have mutually different opinions on selecting influential variables and priorities among the variables. Moreover, it is almost impossible to logically clarify the process of expert's subjective prediction. Currently, to overcome the limitations of subjective call prediction, most call centers are adopting a WFMS(Workforce Management System) package in which expert's best practices are systemized. With WFMS, a user can predict the volume of calls by calculating the average call of each day of the week, excluding some eventful days. However, WFMS costs too much capital during the early stage of system establishment. Moreover, it is hard to reflect new information ontothe system when some factors affecting the amount of calls have been changed. In this paper, we attempt to devise a new model for predicting inbound calls that is not only based on theoretical background but also easily applicable to real world applications. Our model was mainly developed by the interactive decision tree technique, one of the most popular techniques in data mining. Therefore, we expect that our model can predict inbound calls automatically based on historical data, and it can utilize expert's domain knowledge during the process of tree construction. To analyze the accuracy of our model, we performed intensive experiments on a real case of one of the largest car insurance companies in Korea. In the case study, the prediction accuracy of the devised two models and traditional WFMS are analyzed with respect to the various error rates allowable. The experiments reveal that our data mining-based two models outperform WFMS in terms of predicting the amount of accident calls and fault calls in most experimental situations examined.