• Title/Summary/Keyword: fire element analysis

Search Result 213, Processing Time 0.031 seconds

Thermo-mechanical analysis of reinforced concrete slab using different fire models

  • Suljevic, Samir;Medic, Senad;Hrasnica, Mustafa
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.163-182
    • /
    • 2020
  • Coupled thermo-mechanical analysis of reinforced concrete slab at elevated temperatures from a fire accounting for nonlinear thermal parameters is carried out. The main focus of the paper is put on a one-way continuous reinforced concrete slab exposed to fire from the single (bottom) side as the most typical working condition under fire loading. Although contemporary techniques alongside the fire protection measures are in constant development, in most cases it is not possible to avoid the material deterioration particularly nearby the exposed surface from a fire. Thereby the structural fire resistance of reinforced concrete slabs is mostly influenced by a relative distance between reinforcement and the exposed surface. A parametric study with variable concrete cover ranging from 15 mm to 35 mm is performed. As the first part of a one-way coupled thermo-mechanical analysis, transient nonlinear heat transfer analysis is performed by applying the net heat flux on the exposed surface. The solution of proposed heat analysis is obtained at certain time steps of interest by α-method using the explicit Euler time-integration scheme. Spatial discretization is done by the finite element method using a 1D 2-noded truss element with the temperature nodal values as unknowns. The obtained results in terms of temperature field inside the element are compared with available numerical and experimental results. A high level of agreement can be observed, implying the proposed model capable of describing the temperature field during a fire. Accompanying thermal analysis, mechanical analysis is performed in two ways. Firstly, using the guidelines given in Eurocode 2 - Part 1-2 resulting in the fire resistance rating for the aforementioned concrete cover values. The second way is a fully numerical coupled analysis carried out in general-purpose finite element software DIANA FEA. Both approaches indicate structural fire behavior similar to those observed in large-scale fire tests.

Performance-based structural fire design of steel frames using conventional computer software

  • Chan, Y.K.;Iu, C.K.;Chan, S.L.;Albermani, F.G.
    • Steel and Composite Structures
    • /
    • v.10 no.3
    • /
    • pp.207-222
    • /
    • 2010
  • Fire incident in buildings is common, so the fire safety design of the framed structure is imperative, especially for the unprotected or partly protected bare steel frames. However, software for structural fire analysis is not widely available. As a result, the performance-based structural fire design is urged on the basis of using user-friendly and conventional nonlinear computer analysis programs so that engineers do not need to acquire new structural analysis software for structural fire analysis and design. The tool is desired to have the capacity of simulating the different fire scenarios and associated detrimental effects efficiently, which includes second-order P-D and P-d effects and material yielding. Also the nonlinear behaviour of large-scale structure becomes complicated when under fire, and thus its simulation relies on an efficient and effective numerical analysis to cope with intricate nonlinear effects due to fire. To this end, the present fire study utilizes a second-order elastic/plastic analysis software NIDA to predict structural behaviour of bare steel framed structures at elevated temperatures. This fire study considers thermal expansion and material degradation due to heating. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. This finite element stiffness formulation of beam-column elements is derived from the fifth-order PEP element which facilitates the computer modeling by one member per element. The Newton-Raphson method is used in the nonlinear solution procedure in order to trace the nonlinear equilibrium path at specified elevated temperatures. Several numerical and experimental verifications of framed structures are presented and compared against solutions in literature. The proposed method permits engineers to adopt the performance-based structural fire analysis and design using typical second-order nonlinear structural analysis software.

A Study on the Investigation of Users Guide of One-Way Coupled Analysis for Performance-Based Structural Fire Resistance Design (성능기반 구조내화설계를 위한 단방향 연성해석 사용자가이드 조사에 관한 연구)

  • Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.96-97
    • /
    • 2021
  • In the Building Act, performance-based fire safety design is being promoted for institutionalization. The behavior of the structure against fire conditions can be predicted by using the advanced numerical analysis method based on the FEM (Finite Element Method) to predict the entire structural behavior including the behavior of the structure, but there is a limit to expressing the fire properties of the space and predicting the fire properties It is difficult to determine the variables to be transmitted to the FEM (Finite Element Method) model from the fire simulation results using FDS (Fire Dynamics Simulator). Accordingly, the purpose of this study is to introduce the code user's manual for FDS and FEM unidirectional coupling analysis.

  • PDF

Transient heat transfer analysis using Galerkin finite element method for reinforced concrete slab exposed to high elevated temperature

  • Han, Byung-Chan;Kwon, Young-Jin;Lee, Byung-Jae;Kwon, Seung-Jun;Chae, Young-Suk
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1097-1112
    • /
    • 2016
  • Fire loading causes a critical collapse of RC (Reinforced Concrete) Structures since the embedded steels inside are relative week against high elevated temperature. Several numerical frameworks for fire resistance have been proposed, however they have limitations such as unstable convergence and long calculation period. In the work, 2-D nonlinear FE technique is proposed using Galerkin method for RC structures under fire loading. Closed-form element stiffness with a triangular element is adopted and verified with fire test on three RC slabs with different fire loading conditions. Several simulations are also performed considering fire loading conditions, water contents, and cover depth. The proposed numerical technique can handle time-dependent fire loading, convection, radiation, and material properties. The proposed technique can be improved through early-aged concrete behavior like moisture transport which varies with external temperature.

Finite Element Analysis and Material Characteristics of Fire Spray Nozzle for Ship Engine Room (선박 엔진룸의 소화용 분무노즐의 재료특성 및 유동해석)

  • Bae, Dong-Su;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.553-559
    • /
    • 2019
  • Various types of nozzles have been used to cope with fire in ships. However, in Korea, precise nozzles that perform fine spraying function are required for fire fighting in case of fire in a ship, and most of these nozzles depend on imports. Therefore, in this study, we developed various types of nozzles to develop the water spray nozzle for evolving fire in the engine room of the ship, and developed an optimal nozzle through flow analysis and fire test. For this purpose, we selected the materials that can satisfy the characteristics of existing nozzle materials and developed the design technology and processing technology in the nozzle considering fluid flow to achieve optimal water spraying performance. In order to develop an optimal nozzle, the flow through the finite element analysis was first analyzed and the nozzle was manufactured. As a result of flow analysis of the developed nozzle, the maximum velocity at the outlets of four holes at 0.3 MPa was about 3m/s and about 0.15 MPa. In addition, when the pressure at the inlet was 1.8 MPa, it showed the outlet speed of about 18m/s and a pressure of 1.2 MPa.

A Study on the Fire Risk of the Kimchi Refrigerator through Case Analysis of Fire Accidents (사례 분석을 통한 김치냉장고의 화재 위험성에 관한 연구)

  • Park, Nam Kyu;Ji, Hong Keun;Song, Jae Yong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.2
    • /
    • pp.1-7
    • /
    • 2020
  • In this paper, we describe fire risk of Kimchi refrigerator. The Kimchi refrigerator has been widely spread and used starting from the first half of 2000 and recently fire accidents caused by the Kimchi refrigerator emerged as social concern. In particular, in products of a specific manufacturer, it is not an environmental factor, but a characteristic that the fire is caused due to a defect of the product itself is shown. These features are judged to be formed by unique defects regardless of external factor by forming electrically arc mark in the relay element. In this paper, we analyzed the cause of the fire occurring in the Kimchi refrigerator and finally confirmed the characteristic that the fire occurred mainly in the relay element due to insufficient capacity of the relay element. Therefore, when a fire occurs in a product of the same maker as the Kimchi refrigerator mentioned in this paper, it is always judged that the inspection of the relay element should be carried out.

Development of the Evaluation Element for Fire Engineering Design (건축물의 성능적 내화설계 평가 요소기술 개발)

  • Kwon, In-Kyu;Kim, Heung-Youl
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.410-414
    • /
    • 2009
  • Performance based fire engineering design should be developed through basic survey and fundamental element such as analytic program for evaluation of fire performance of building. The basic elements will be expressed to the surveys of the structures of building laws, regulation and the fundamental elements consist of technical guidances contained design fires, heat analysis, determination of structural performance.

  • PDF

Fire Performance Analysis of SLIM AU Composite Beam (슬림 AU 합성보의 내화해석)

  • Kim, Myeong-Han;Oh, Myoung-Ho;Min, Jeong-Ki
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.133-140
    • /
    • 2016
  • SLIM AU(A plus U-shaped) composite beam had been developed for not only reducing the story height in residential and commercial building, but also saving the cost of floor construction. The structural performance and economic feasibility was sufficiently approved by means of structural experiments and analytical studies. Even though fire resistance of the SLIM AU composite beam was evaluated throughout furnace fire test, the fire performance of the composite beam using finite element analysis is not analysed yet. Therefore the predictions of fire resistance simulations with loading as well as temperature distribution of the composite beam are summarized in this paper.

Performance of steel beams at elevated temperatures under the effect of axial restraints

  • Liu, T.C.H.;Davies, J.M.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.427-440
    • /
    • 2001
  • The growing use of unprotected or partially protected steelwork in buildings has caused a lively debate regarding the safety of this form of construction. A good deal of recent research has indicated that steel members have a substantial inherent ability to resist fire so that additional fire protection can be either reduced or eliminated completely. A performance based philosophy also extends the study into the effect of structural continuity and the performance of the whole structural totality. As part of the structural system, thermal expansion during the heating phase or contraction during the cooling phase in most beams is likely to be restrained by adjacent parts of the whole system or sub-frame assembly due to compartmentation. This has not been properly addressed before. This paper describes an experimental programme in which unprotected steel beams were tested under load while it is restrained between two columns and additional horizontal restraints with particular concern on the effect of catenary action in the beams when subjected to large deflection at very high temperature. This paper also presents a three-dimensional mathematical modelling, based on the finite element method, of the series of fire tests on the part-frame. The complete analysis starts with an evaluation of temperature distribution in the structure at various time levels. It is followed by a detail 3-D finite element analysis on its structural response as a result of the changing temperature distribution. The principal part of the analysis makes use of an existing finite element package FEAST. The effect of columns being fire-protected and the beam being axially restrained has been modelled adequately in terms of their thermal and structural responses. The consequence of the beam being restrained is that the axial force in the restrained beam starts as a compression, which increases gradually up to a point when the material has deteriorated to such a level that the beam deflects excessively. The axial compression force drops rapidly and changes into a tension force leading to a catenary action, which slows down the beam deflection from running away. Design engineers will be benefited with the consideration of the catenary action.

Finite Element Analysis of Slender Reinforced Concrete Columns Subjected to Eccentric Axial Loads and Elevated Temperature (고온과 편심 축하중을 받는 세장한 철근 콘크리트 기둥의 유한요소해석)

  • Lee, Jung-Hwan;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.159-166
    • /
    • 2022
  • In this study, slender reinforced concrete columns subjected to high temperatures and eccentric axial loads are evaluated by finite element analysis employing Abaqus (a finite element analysis program). Subsequently, the analysis results are compared and assessed. The sequentially coupled thermal stress analysis provided by Abaqus was employed to reflect the condition of an axially loaded column exposed to fire. First, heat transfer analysis was performed on the column cross-section. After verifying the results, another analysis was conducted: the cross-section was transformed into a three-dimensional element and then structural analyzed. In the analysis process, the column was modeled by accounting for the effects of tension stiffening and initial imperfection that could affect convergence and accuracy. The analysis results were compared with 74 experimental records, and an average error of 6% was observed based on the fire exposure and resistance. The foregoing indicates that the fire resistance performance of reinforced concrete columns can be predicted through finite element analysis.