• Title/Summary/Keyword: fire design

Search Result 1,648, Processing Time 0.025 seconds

A Study on Analysis on an Automotive Fire Case that Broke Out due to an Electrical Cause during Engine Stopping (엔진정지 중 전기적인 원인에 의해 발생한 자동차화재의 분석 연구)

  • Lee, Euipyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • Although it is widely accepted that a fire can occur due to electrical causes even when an engine stops, there is little introduction of detailed case analysis. This study analyzed a fire case caused by an electrical cause during engine stopping at parking lot in detail. Moreover, it was revealed that the fire was mainly caused by design defect.

A Study about False Alarm of Automatic Fire Detection System (자동화재 탐지설비의 비화재보 감소방안)

  • Lee, Jong-Hwa;Lee, Chun-Ha;Kim, Shi-Kuk;Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.41-49
    • /
    • 2011
  • The automatic fire detection system is an important facility installed with focusing on minimizing the damage from a fire. This paper presents in the followings as the methods to reduce the false alarm of the automatic fire detection system; first, to prepare for legal standard so that revised legal standard can be applied to the fire fighting property prior to revision; second, to introduce the performance based fire detection protection design in the law based fire protection design; third, to maintain the wiring of worn-out detector; forth, to introduce an evaluation system to the education for the fire warden; fifth, to extend the standard of MTBF(meantime between failure) of the detector; sixth, to extend of installing the analog type detector; seventh, to improve the structure of reset switch.

Some Considerations for the Fire Safe Design of Tall Buildings

  • Cowlard, Adam;Bittern, Adam;Abecassis-Empis, Cecilia;Torero, Jose L.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.63-77
    • /
    • 2013
  • In any subject area related to the provision of safety, failure is typically the most effective mechanism for evoking rapid reform and an introspective assessment of the accepted operating methods and standards within a professional body. In the realm of tall buildings the most notable failures in history, those of the WTC towers, widely accepted as fire induced failures, have not to any significant extent affected the way they are designed with respect to fire safety. This is clearly reflected in the surge in numbers of Tall Buildings being constructed since 2001. The combination of the magnitude and time-scale of the WTC investigation coupled with the absence of meaningful guidance resulting from it strongly hints at the outdatedness of current fire engineering practice as a discipline in the context of such advanced infrastructure. This is further reflected in the continual shift from prescriptive to performance based design in many parts of the world demonstrating an ever growing acceptance that these buildings are beyond the realm of applicability of prescriptive guidance. In order for true performance based engineering to occur however, specific performance goals need to be established for these structures. This work seeks to highlight the critical elements of a fire safety strategy for tall buildings and thus attempt to highlight some specific global performance objectives. A survey of tall building fire investigations is conducted in order to assess the effectiveness of current designs in meeting these objectives, and the current state-of-the-art of fire safety design guidance for tall structures is also analysed on these terms. The correct definition of the design fire for open plan compartments is identified as the critical knowledge gap that must be addressed in order to achieve tall building performance objectives and to provide truly innovative, robust fire safety for these unique structures.

A Study on Fire Hazard Analysis and Smoke Flowing for the Semiconductor Manufacturing Process (반도체 제조공정의 연기유동에 관한 연구)

  • Han, Soo-Jin;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.1
    • /
    • pp.197-211
    • /
    • 2007
  • The power of semiconductor, Korea is continuously constructing semiconductor production line for keeping a front-runner status. however, studies and data about potential risks in semiconductor factory are still short. If fire does not initially suppressed, the fire causes a great damage. To decrease fire risk factors, in addition to fire fighting safety equipment, more important thing is how to design and construct fire protection system. The current fire protection codes about semiconductor factory come under functional law, and this law is short of consideration about particularity of factory. The existing prescriptive fire codes depending on experience compose without evident engineering verifications, thus equipments which is created by the current prescriptive fire code may bring about a variety of problems. For example, the design under the current regulation can not cope with the excessive investments, low efficiencies, and the diversifying construction designs and be applied to the quick changes of new technologies. Ergo, an optimal design for fire protection is to equip fire protection arrangements with condition and environment of production field. Manufacturing factory of semiconductors is a windowless airtight space. And for cleanliness, there exists strong flow of cooperation. Therefore, there is a need for fire safety design that meets the characteristic of a clean room. Accordingly, we are to derive smoke flow according to cooperation process within a clean room and construction plan of an optimal sensor system. In this study, in order to confirm the performance of proposed smoke-exhaust equipment and suggest efficient smoke exhaust device when there is a fire of 1MW of methane in the clean room of company H, we have implemented fire simulation using fluid dynamics computation.

A Study on the Needs to Improve the Regulations and the Design Features of Fire Protection for UAE Nuclear Power Plants (UAE원전 화재방호계통 설계특성과 화재방호규제 개선 필요성 연구)

  • Ma, Jin-Soo;Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.54-61
    • /
    • 2011
  • The study is to analysis of fire protection regulations for the nuclear power plants (NPP) in the United States, Japan, the UAE (United Arab Emirates), and Korea with the intention of exporting NPP to the UAE. Fire protection regulations for NPP for these countries permit the fire protection design and facilities in accordance with the evaluation of the potential fire hazards. However, in Korea, the NPP is a part of power generation facilities in Korea fire protection law, and the atomic energy act classifies them as the reactor and related nuclear facilities. The fire protection law and atomic energy act are different to the criteria for the fire protection of NPP. To maintain the leading position as a nuclear exporting country, the performance-based fire hazard analysis should be reasonably incorporated in the design of the fire protection system. It was suggested that the integrated requirements of the fire protection for NPP should be incorporated to the construction article for the fire protection facilities specified in paragraph 2 of Act II, being classified into the special objects to be protected against fire, which requires a performance-based design in order to incorporate the specific requirements for NPP.

A Study on Powder Fire Extinguisher Design with RULA Technique Used (RULA 평가기법을 활용한 분말소화기 디자인 연구)

  • Kang, Chaewoo;Kim, Dueknam
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.117-123
    • /
    • 2017
  • This study was intended to find methods of fire extinguishing system designs that can improve the equipment's usability. In this study, the fire suppression experiment through fire extinguishers and the data drawn through the experiment were analyzed, and then the guideline for the improvement of designs was presented. The procedure is as follows. A fire suppression experiment with the use of fire extinguishers was done by 43 average adults. The whole process of the fire suppression was videotaped, and then captured major scenes were analyzed with the use of RULA, a human engineering measurement tool. The analyzed data were divided into 4 steps, and then the guideline for design improvement was presented. The summary of the study is as follows. Step 1, Fire extinguisher distance step. To reduce overload occurring at the process of holding fire extinguishers suddenly, wheels are attached to the body of extinguishers, or pedestals are installed. Step 2, Fire extinguisher transportation step. The length of hose is extended, or fire fighting water is sprayed far, so that overload of legs occurring at the process of travel can be reduced. In addition, the weight of fire extinguisher shouldn't be over 2 kg. Step 3, Safety pin removal stage. Safety pins should be applied with button type, so that excessive posture of lower limbs and excessive twisting of wrists won't happen during safety pin removal process. Besides, safety pins should be designed for easy identification and operation. Step 4, Fire extinguishing agent spraying step. To reduce overload occurring at sudden spraying of fire fighting water, pressure should be increased gradually until high pressure. With the above study results applied to existing fire extinguisher design, it may contribute to reducing any fire damage.

Heat Release Characteristics of Typical Live Fire Load in Large Bookstore (대형서점 적재가연물의 초기 연소발열성상)

  • Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.25 no.2
    • /
    • pp.88-94
    • /
    • 2011
  • Heat release characteristics of live fire load are an important parameter for performance oriented fire safety design of a building. While investigations have been carried out on the fire load and its burning behavior in office, residential and commercial buildings and so on, little effort has been paid for the rational treatment of fire load in bookstore. In this report, burning behavior of typical combustible objects in bookstore are studied by measuring heat release rates of bookshelf with book. Based on the results, it has reviewed fire safety when a fire accident occurs on the large bookstore and suggested peak heat release rate per burning surface, fire growth rate, etc of the live fire load required for fire safety design in bookstore.

Fire Resistance Studies on High Strength Steel Structures

  • Wang, Wei-Yong;Xia, Yue;Li, Guo-Qiang
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.287-298
    • /
    • 2018
  • High strength steels have been widely applied in recent years due to high strength and good working performance. When subjected to fire conditions, the strength and elastic modulus of high strength steels deteriorate significantly and hence the load bearing capacity of structures reduces at elevated temperatures. The reduction factors of mechanical properties of high strength steels are quite different from mild steels. Therefore, the fire design methods deduced from mild steel structures are not applicable to high strength steel structures. In recent ten years, the first author of this paper has carried out a lot of fundamental research on fire behavior of high strength steels and structures. Summary of these research is presented in this paper, including mechanical properties of high strength steels at elevated temperature and after fire exposure, creep response of high strength steels at elevated temperature, residual stresses of welded high strength steel member after fire exposure, fire resistance of high strength steel columns, fire resistance of high strength steel beams, local buckling of high strength steel members, and residual strength of high strength steel columns after fire exposure. The results show that the mechanical properties of high strength steel in fire condition and the corresponding fire resistance of high strength steel structures are different from those of mild steel and structures, and the fire design methods recommended in current design codes are not applicable to high strength steel structures.

A Forecast Study on the Fire Growth Rate and Investigation of Combustible for Fire Safety Design in Building (건축물 화재안전설계를 위한 주요가연물조사 및 화재성장율 예측에 관한 연구)

  • Seo, Dong-Goo;Kim, Dong-Eun;Kim, Bong-Chan;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.133-135
    • /
    • 2012
  • The Fire growth rate(kW/s2) is significant impact on initial fire behavior in fire safety design of buildings. As a result of domestic existing combustibles, this study analyzed considering matters in techniques for calculating caloric values, and then made an investigation sheet. By utilizing written combustion sheets, the study could suggest a standard model at common houses and dense ones after getting caloric value information in dense ones. As a result, fire growth rate is experiment 1(0.01), experiment 2(0.0048), FDS(0.0072), MATSUYAMA equation(0.0144).

  • PDF

Design of the Full-Scale Fire Safety Evaluation Facility for Railroad Vehicle Fire (철도차량 실대형 화재안전 성능평가 장치 설계)

  • Yoo, Yong-Ho;Kim, Heung-Youl
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.222-225
    • /
    • 2008
  • To prove a lot of technical difficulties related to the safety management of a railroad fire effectively, we design for the full-scale fire test facility of the railroad vehicle. It will be consist of major 3 part - duct system with smoke cleaning system, measuring section and gas analysis system. The CFD simulation was also carried out to design of the hood and duct system optimization. The results will be help for basic research of the railroad fire safety.

  • PDF