• 제목/요약/키워드: fire blight disease

검색결과 45건 처리시간 0.024초

과수화상병 저항성 사과대목의 MR5보유 대목별 비교 (Comparison of the Apple Rootstock Cultivar with the MR5 Resistance Traits of Fire Blight Resistance)

  • 권영희;최원일;김희규;김경옥;김주형
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2020년도 추계국제학술대회
    • /
    • pp.48-48
    • /
    • 2020
  • Fire blight, caused by Erwinia amylovora(Burrill), is a destructive disease of apple that damages blossoms, shoots, and woody plant organs. The fire blight disease is a worldwide problem for pome fruit growers because all popular apple cultivars are susceptible to the disease. Recently, fire blight of apple rootstocks has become a serious economic problem in high-density orchard systems in korea. The most commonly used dwarfing root stocks, M.9 and M.26, are highly susceptible to E. amylovora. The objective of the apple rootstock-breeding program has been to develop pomologically excellent rootstocks with resistance to abiotic and biotic stresses, including fire blight. Budagovsky 9 (B.9) apple rootstock is reported to be highly susceptible when inoculated with E. amylovora, although results from multiple trials showed that B.9 is resistant to rootstock blight infection in field plantings. So we tried to collect the apple rootstocks traits of fire blight resistance. The apple genotype Malus Robusta 5 (MR5) represents an ideal donor for fire blight resistance because it was described as resistant to all currently known European strains of the pathogen. The PCR for detecting the MR5 gene using the primers Md_MR5_FL_F/Md_MR5_FL_R. The results of these experiments confirmed some apple rootstocks traits of fire blight resistance showed the MR5. Furthermore, this gene is confirmed to be the resistance determinant of Mr5 as the transformed lines undergo the same gene-for-gene interaction in the host-pathogen relationship MR5-E. amylovora.

  • PDF

Biological Control Potential of Penicillium brasilianum against Fire Blight Disease

  • Kim, Yeong Seok;Ngo, Men Thi;Kim, Bomin;Han, Jae Woo;Song, Jaekyeong;Park, Myung Soo;Choi, Gyung Ja;Kim, Hun
    • The Plant Pathology Journal
    • /
    • 제38권5호
    • /
    • pp.461-471
    • /
    • 2022
  • Erwinia amylovora is a causative pathogen of fire blight disease, affecting apple, pear, and other rosaceous plants. Currently, management of fire blight relies on cultural and chemical practices, whereas it has been known that few biological resources exhibit disease control efficacy against the fire blight. In the current study, we found that an SFC20201208-M01 fungal isolate exhibits antibacterial activity against E. amylovora TS3128, and the isolate was identified as a Penicillium brasilianum based on the 𝛽-tubulin (BenA) gene sequence. To identify active compounds from the P. brasilianum culture, the culture filtrate was partitioned with ethyl acetate and n-butanol sequentially. From the ethyl acetate layer, we identified two new compounds (compounds 3-4) and two known compounds (compounds 1-2) based on spectroscopic analyses and comparison with literature data. Of these active compounds, penicillic acid (1) exhibited promising antibacterial activity against E. amylovora TS3128 with a minimal inhibitory concentration value of 25 ㎍/ml. When culture filtrate and penicillic acid (125 ㎍/ml) were applied onto Chinese pearleaf crab apple seedlings prior to inoculation of E. amylovora TS3128, the development of fire blight disease was effectively suppressed in the treated plants. Our results provide new insight into the biocontrol potential of P. brasilianum SFC20201208-M01 with an active ingredient to control fire blight.

Discriminant analysis to detect fire blight infection on pear trees using RGB imagery obtained by a rotary wing drone

  • Kim, Hyun-Jung;Noh, Hyun-Kwon;Kang, Tae-Hwan
    • 농업과학연구
    • /
    • 제47권2호
    • /
    • pp.349-360
    • /
    • 2020
  • Fire-blight disease is a kind of contagious disease affecting apples, pears, and some other members of the family Rosaceae. Due to its extremely strong infectivity, once an orchard is confirmed to be infected, all of the orchards located within 100 m must be buried under the ground, and the sites are prohibited to cultivate any fruit trees for 5 years. In South Korea, fire-blight was confirmed for the first time in the Ansung area in 2015, and the infection is still being identified every year. Traditional approaches to detect fire-blight are expensive and require much time, additionally, also the inspectors have the potential to transmit the pathogen, Thus, it is necessary to develop a remote, unmanned monitoring system for fire-blight to prevent the spread of the disease. This study was conducted to detect fire-blight on pear trees using discriminant analysis with color information collected from a rotary-wing drone. The images of the infected trees were obtained at a pear orchard in Cheonan using an RGB camera attached to a rotary-wing drone at an altitude of 4 m, and also using a smart phone RGB camera on the ground. RGB and Lab color spaces and discriminant analysis were used to develop the image processing algorithm. As a result, the proposed method had an accuracy of approximately 75% although the system still requires many flaws to be improved.

2015-2019년 국내 과수 화상병 발생 (Outbreak of Fire Blight of Apple and Asian Pear in 2015-2019 in Korea)

  • 함현희;이영기;공현기;홍성준;이경재;오가람;이미현;이용환
    • 식물병연구
    • /
    • 제26권4호
    • /
    • pp.222-228
    • /
    • 2020
  • 과수 화상병을 일으키는 Erwinia amylovora는 국내에서 금지병원균으로 지정되어 화상병 발생 시, 중앙 정부의 진단을 근거로 기주를 매몰하는 공적 방제가 실시되고 있다. 국내 과수 화상병은 2015년 안성, 천안 및 제천의 43농가에서 발생하여 42.9 ha를 매몰한 것을 시작으로, 2019년 발생 지역이 11개 시군으로 확산되었으며, 총 348농가 260.4 ha가 매몰되었다. 배나무 화상병은 주로 경기남부와 충남에서 발생되었고, 발생 건수가 연평균 29±9.2건으로 매년 비교적 고르게 발생되었으며 20-30년생 과수에서 발병 비율이 가장 높았다. 반면, 사과나무 화상병은 주로 경기북부, 강원, 충북에서 발생되었고, 발생 건수가 연평균 41±57.6건으로 2018-2019년 발생건수가 크게 증가하였으며, 20년 이하의 과수의 발병 비율이 높았다. 국내 과수 화상병은 어린 사과나무에서 병의 확산이 빠르므로, 특히 미성숙 과수가 식재된 과원에서는 화상병이 발병하지 않도록 약제를 적기에 살포하는 등 예방을 철저히 하고, 발병 시 신속히 방제해야 한다.

Survival of Erwinia amylovora on Surfaces of Materials Used in Orchards

  • Choi, Hyun Ju;Kim, Yeon Ju;Lim, Yeon-Jeong;Park, Duck Hwan
    • 식물병연구
    • /
    • 제25권2호
    • /
    • pp.89-93
    • /
    • 2019
  • Fire blight disease caused by the bacterium, Erwinia amylovora, was observed in apple and pear orchards in Korea in 2015. Since then, it has spread, sometimes over long distances to other orchards. Therefore, we examined the ability of E. amylovora to survive in soils and on the surfaces of common materials such as T-shirts, wrist bands, pruning shears, and rubber boots by both conventional PCR (cPCR) and quantitative PCR (qPCR) methods. E. amylovora was detected in all materials tested in this study and survived for sufficiently long periods to cause fire blight disease in new sites. Thus, based on the results of this study, sanitation protocols must be applied to equipment during orchard work.

2019년 국내 사과와 배 화상병 대발생과 그 특징 (Outbreak of Fire Blight of Apple and Pear and Its Characteristics in Korea in 2019)

  • 함현희;이경재;홍성준;공현기;이미현;김현란;이용환
    • 식물병연구
    • /
    • 제26권4호
    • /
    • pp.239-249
    • /
    • 2020
  • 2019년 국내의 사과와 배에 화상병이 크게 발생한 원인을 파악하기 위하여 화상병 발생한 30개 과원을 대상으로 각각의 발생 상황과 농가 면담을 통해 경종적 특징 등을 조사하였다. 화상병은 이미 감염된 지 2년 이상 오래 된 과원에서 대부분 발생하였는데, 이런 원인은 (1) 농가가 병 증상을 정확히 알지 못하여 농작업과 방화곤충 등을 통해 과원 내에서 퍼지게 되고, (2) 방화곤충이나 농작업자 등에 의해 처음 발생 과원에서 주변 과수원으로 확산되었고, (3) 동일 경작자 또는 공동 농작업자에 의해 근거리 또는 원거리로 확산된 것이라고 추정할 수 있다. (4) 이런 일련의 과정이 새롭게 확산된 지역에서 반복되다가 농가들이 화상병을 알게 되면서 신고가 증가한 것이 2019년 화상병 대발생의 일련의 원인이라고 추정할 수 있었다. 국내에서 화상병 확산을 최소화하기 위해서는 조기진단을 위한 철저한 농업인 교육과 무병징 식물체에서도 화상병균 진단이 가능한 정량적 검출기술이 요구되고 있다. 또한 큰 열매를 주로 생산하는 국내 재배법에 적합한 약제방제 체계 개발이 필요하다. 화상병 방제에서 가장 중요한 가지의 궤양 증상, 묘목, 양봉장 등의 전염원 관리를 위해서 과원별 병원균의 분자역학연구를 통해 정확한 확산경로를 구명할 것을 제안한다.

기내 검정법을 이용한 국내 과수 화상병 방제제 선발 (In Vitro Screening of Antibacterial Agents for Suppression of Fire Blight Disease in Korea)

  • 이민수;이인경;김삼규;오창식;박덕환
    • 식물병연구
    • /
    • 제24권1호
    • /
    • pp.41-51
    • /
    • 2018
  • 국내 과수 화상병은 2015년 사과 및 배에서 발생하여 큰 피해를 주고 있으나, 이에 대한 적절한 방제제는 등록되어 있지 않다. 다만 농촌진흥청은 무름병과 세균점무늬병 등 다른 식물세균병해에 등록되어 있는 살세균제들을 직권등록 시켜놓은 상태이다. 그러나 직권등록이란, 약효는 보증하지 않으면서 약해만을 보증하는 제도로, 국내에서 과수 화상병이 지속적으로 발생되고 있는 상황에서는 적절한 방제제를 선발하는 것이 요구되어지기에 본 연구를 수행하였다. 직권등록 국내 과수 화상병 방제제 중, 각각 4종의 농용항생제와 구리 합성 화학물 그리고 생물학적 방제제 2종에 대한 기내 검정법을 통하여 국내 과수 화상병원세균 억제 및 병징확산 억제효과를 검증하였다. Kasugamycin, Oxytetracycline 및 streptomycin의 항생제는 효과가 우수하였으며, oxolinic acid는 꽃에서의 억제효과는 우수하였지만 신초 및 미성숙과 기내검정에서는 다소 효과가 감소하였다. 4종의 구리 합성 화학물은 항생제만큼의 억제효과는 나타내지 않았지만, 사용가능한 수준으로 조사되었다. 또한 2종의 생물적 방제제는 처리시기 등을고려할 경우, 친환경 재배지에서는 사용 가능할 것으로 판단되었다. 한편 국내 과수 화상병원세균은 선발 방제제 중 항생제 저항성 유전자들을 가지고 있지 않고,화분매개충에 대한 영향도 없는 것으로 조사되었다.

Development of K-Maryblyt for Fire Blight Control in Apple and Pear Trees in Korea

  • Mun-Il Ahn;Hyeon-Ji Yang;Sung-Chul Yun
    • The Plant Pathology Journal
    • /
    • 제40권3호
    • /
    • pp.290-298
    • /
    • 2024
  • K-Maryblyt has been developed for the effective control of secondary fire blight infections on blossoms and the elimination of primary inoculum sources from cankers and newly emerged shoots early in the season for both apple and pear trees. This model facilitates the precise determination of the blossom infection timing and identification of primary inoculum sources, akin to Maryblyt, predicting flower infections and the appearance of symptoms on various plant parts, including cankers, blossoms, and shoots. Nevertheless, K-Maryblyt has undergone significant improvements: Integration of Phenology Models for both apple and pear trees, Adoption of observed or predicted hourly temperatures for Epiphytic Infection Potential (EIP) calculation, incorporation of adjusted equations resulting in reduced mean error with 10.08 degree-hours (DH) for apple and 9.28 DH for pear, introduction of a relative humidity variable for pear EIP calculation, and adaptation of modified degree-day calculation methods for expected symptoms. Since the transition to a model-based control policy in 2022, the system has disseminated 158,440 messages related to blossom control and symptom prediction to farmers and professional managers in its inaugural year. Furthermore, the system has been refined to include control messages that account for the mechanism of action of pesticides distributed to farmers in specific counties, considering flower opening conditions and weather suitability for spraying. Operating as a pivotal module within the Fire Blight Forecasting Information System (FBcastS), K-Maryblyt plays a crucial role in providing essential fire blight information to farmers, professional managers, and policymakers.

Identification of virulence-associated genes of Erwinia amylovora by transposon mutagenesis

  • Seung Yeup Lee;Hyun Gi Kong;In Jeong Kang;Hyeonseok Oh;Hee-Jong Woo;Eunjung Roh
    • 농업과학연구
    • /
    • 제50권2호
    • /
    • pp.241-247
    • /
    • 2023
  • Erwinia amylovora , which causes fire blight disease on apple and pear trees, is one of the most important phytopathogens because of its devastating impact. Currently, the only way to effectively control fire blight disease is through the use of antibiotics such as streptomycin, kasugamycin, or oxytetracycline. However, problems with the occurrence of resistant strains due to the overuse of antibiotics are constantly being raised. It is therefore necessary to develop novel disease control methods through an advanced understanding of the pathogenesis mechanism of E. amylovora . To better understand the pathogenesis of E. amylovora , we investigated unknown virulence factors by random mutagenesis and screening. Random mutants were generated by Tn5 transposon insertion, and the pathogenicity of the mutants was assessed by inoculation of the mutants on apple fruitlets. A total of 17 avirulent mutants were found through screening of 960 random mutants. Among them, 14 mutants were already reported as non-pathogenic strains, while three mutants, TS3128_M2899 (ΔSUFU ), TS3128_M2939 (ΔwcaG ), and TS3128_M3747 (ΔrecB ), were not reported. Further study of the association between E. amylovora pathogenicity and these 3 novel genes may provide new insight into the development of control methods for fire blight disease.

Comparison of Bacterial Community of Healthy and Erwinia amylovora Infected Apples

  • Kim, Su-Hyeon;Cho, Gyoengjun;Lee, Su In;Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • 제37권4호
    • /
    • pp.396-403
    • /
    • 2021
  • Fire blight disease, caused by Erwinia amylovora, could damage rosaceous plants such as apples, pears, and raspberries. In this study, we designed to understand how E. amylovora affected other bacterial communities on apple rhizosphere; twig and fruit endosphere; and leaf, and fruit episphere. Limited studies on the understanding of the microbial community of apples and changes the community structure by occurrence of the fire blight disease were conducted. As result of these experiments, the infected trees had low species richness and operational taxonomic unit diversity when compared to healthy trees. Rhizospheric bacterial communities were stable regardless of infection. But the communities in endosphere and episphere were significanlty affected by E. amylovora infection. We also found that several metabolic pathways differ significantly between infected and healthy trees. In particular, we observed differences in sugar metabolites. The finding provides that sucrose metabolites are important for colonization of E. amylovora in host tissue. Our results provide fundamental information on the microbial community structures between E. amylovora infected and uninfected trees, which will contribute to developing novel control strategies for the fire blight disease.