• Title/Summary/Keyword: finite-element analysis

Search Result 16,832, Processing Time 0.041 seconds

A Study on the Convergency of the Finite Element Analysis of Rubber Using Numerical Differentiation Mehthod (수치미분을 이용한 고무의 유한요소 해석시 수렴성 연구)

  • 권영두;노권택;이창섭;홍상표
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.141-153
    • /
    • 1999
  • A finite element procedure for the analysis of rubber-like hyperelastic material is developed. The volumetric incompressiblity conditions of the rubber deformation is included in the formulation by using penalty method. In this paper, the behavior of the rubber deformation is represented by hyperelastic constitutive relations based on a generalized Mooney-Rivlin model. The principle of virtual work is used to derive nonlinear finite element equation for the large displacement problem and presented in total-Lagrangian description. The finite element procedure using analytic differentiation resulted in very close solution to the result of the well known commercial packages NISAII AND ABAQUS. Numerical tests show that the results from the numerical differentiation method coincide very well with those from the analytic method and the well known commercial packages in static analysis. The convergency of rubber usingν iteration method is also discussed.

  • PDF

Formulation of an Interface Element and Stiffness Evaluation of an Leaf Spring (계면 요소의 구성과 이를 이용한 겹판스프링의 강성도 평가)

  • 정정희;임장근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.141-147
    • /
    • 1997
  • For the effective finite element analysis of the structures including material interfaces or contact surfaces, interface elements are proposed. Most of early works in this problem require not only iterative computation but also complex formulation because of the kinematic nonlinearities caused from the discontinuous behavior and the stress concentration phenomena. The proposed elements, however, are consistently formulated using relative displacements and tractions between top and bottom regular finite elements. The effectiveness of these elements are shown by solving various numerical sample problems including an leaf spring and comparing with results of general finite element analysis. As a result, more stable solutions are conveniently obtaines using interface elements than regular finite elements.

  • PDF

Nodeless Variables Finite Element Method and Adaptive Meshing Teghnique for Viscous Flow Analysis

  • Paweenawat Archawa;Dechaumphai Pramote
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1730-1740
    • /
    • 2006
  • A nodeless variables finite element method for analysis of two-dimensional, steady-state viscous incompressible flow is presented. The finite element equations are derived from the governing Navier-Stokes differential equations and a corresponding computer program is developed. The proposed method is evaluated by solving the examples of the lubricant flow in journal bearing and the flow in the lid-driven cavity. An adaptive meshing technique is incorporated to improve the solution accuracy and, at the same time, to reduce the analysis computational time. The efficiency of the combined adaptive meshing technique and the nodeless variables finite element method is illustrated by using the example of the flow past two fences in a channel.

Finite Element Analysis of Electromechanical Field of a Spindle Motor in a Computer Hard Disk Drive Considering Speed Control Using PWM and Mechanical Flexibility (PWM에 의한 속도 제어와 유연 구조를 고려한 컴퓨터 하드디스크 드라이브용 스핀들 모터의 기전 연성 유한 요소 해석)

  • Jang, Jeong-Hwan;Jang, Geon-Hui
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.499-508
    • /
    • 2002
  • This paper presents a finite element analysis of the electromechanical field in the spindle motor of a computer hard disk drive considering the speed control and mechanical flexibility. The driving circuit equation is modified by considering the switching action of PWM inverter, and is coupled with the Maxwell equation to obtain the nonlinear time-stepping finite element equation for the analysis of magnetic field. Magnetic force and torque are calculated by the Maxwell stress tensor. Mechanical motion of a rotor is determined by a time-stopping finite element method considering the flexibility of shaft, rotor and bearing. Both magnetic and mechanical finite element equations are combined in the closed loop to control the speed using PWM. Simulation results are verified by the experiments, and they are in food agreement with the experimental results.

Finite Element Model Verification of Buckling Restrained Brace With Nonlinear Behavior (비선형 거동을 하는 비좌굴가새의 유한요소모델 검증)

  • Kim, Dae-Hong;Yoo, Jung-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.81-88
    • /
    • 2021
  • In this paper, nonlinear finite element analysis was conducted based on the experimental results on buckling restrained brace. The reliability of the analytical model was verified by comparing the results of experimental studies with hysteresis loop, bi-linear curve, cumulative energy dissipation capacity, and equivalent viscous damping. A valid finite element model has been secured and will be used as basic data for finite element analysis of buckling restrained braces in the future.

Reliability-based design optimization of structural systems using a hybrid genetic algorithm

  • Abbasnia, Reza;Shayanfar, Mohsenali;Khodam, Ali
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1099-1120
    • /
    • 2014
  • In this paper, reliability-based design optimization (RBDO) of structures is addressed. For this purpose, the global search and optimization capabilities of genetic algorithm (GA) are combined with the efficiency and reasonable accuracy of an advanced moment-based finite element reliability method. For performing RBDO, three variants of GA including a real-coded, a binary-coded and an improved binary-coded GA are developed. In these methods, GA performs (finite element) reliability analyses to evaluate reliability constraints. For truss structures which include finite element modeling, reliability constraints are evaluated using finite element reliability analysis. Response sensitivity required for finite element reliability analysis is obtained by direct differentiation method (DDM) rather than finite difference method (FDM). The proposed methods are examined within four standard test examples and real-world design problems. The results illustrate the superiority and efficiency of the improved binary-coded GA. Results also illustrate that DDM significantly reduces the computational cost and improves the efficiency of the optimization procedure.

Transient Dynamic Analysis of a Patterned Tire Rolling over a Cleat with an Explicit Finite Element Program (외연적 유한요소법을 이용한 패턴 타이어에 대한 돌기물 통과시의 동적 특성 해석)

  • 김기운;정현성;범현규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.164-170
    • /
    • 2003
  • The finite element analysis of tires has been conventionally performed by either neglecting tread pattern or modeling only circumferential grooves. Besides, the tire analysis has been mainly limited to static or steady state rolling analysis. In this paper, a transient dynamic analysis of a patterned tire rolling over a cleat with an explicit finite element program is presented. The patterned tire with detailed tread blocks is modeled by a systematic mesh generation procedure, in which tire body and tread pattern meshes are separately generated in the beginning and then both meshes are combined by the tie constraint method. The cleat impact analysis is conducted by using both the patterned tire and the smooth tire models to predict the cleat enveloping characteristics. It is seen that the analysis results of the patterned tire model are in a good agreement with the experimental results.

Inverse Finite Element Analysis of Autobody Structures with a Direct Mesh Mapping Method for Crash Analysis Considering Forming Effets (직접격자 사상법을 이용한 차체 구조물의 유한요소 역해석 및 성형효과를 고려한 충돌해석)

  • Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.457-464
    • /
    • 2002
  • A finite element inverse analysis is utilized to consider forming effects of an S-rail on the assessment of the crashworthiness with small amount of computation time. A crash analysis can be directly performed after the inverse simulation of a forming process without a smoothing or remeshing scheme. The direct mesh mapping method is used to calculate an initial guess from a sliding constraint surface that is extracted from the die and punch set. Analysis results demonstrate that energy absorption of structures is increased when simulation considers forming effects of thickness variation and work hardening. The finite element inverse analysis is proved to be an effective tool in consideration of forming effects for the crash analysis.

A Study on Vibration Analysis Method Using the Global Structural Analysis Model (전선 구조해석 모델을 이용한 진동해석 방법에 관한 연구)

  • Park, Hyung-Sik;Choi, Su-Hyun;Lee, Yong-Sub
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.314-322
    • /
    • 2007
  • In general, the vibration and structural analyses have been carried out by using each finite element model separately because of different size of finite element mesh and different focusing area of each analysis. In some cases, however, it is required to perform both global vibration and structural analyses at the same time using a finite element model for global structural analysis, which asks for a special treatment for a vibration analysis. In this study, a technique to perform a global vibration analysis using a finite element model for a global structural analysis has been developed and its effectiveness has been verified by its application to a whole ship.

Elastic-plastic Analysis of a 3-Dimensional Inner Crack Using Finite Element Alternating Method (유한요소 교호법을 이용한 삼차원 내부 균열의 탄소성 해석)

  • Park, Jai-Hak;Park, Sang-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1009-1016
    • /
    • 2007
  • Finite element alternating method has been suggested and used effectively to obtain the fracture parameters in assessing the integrity of cracked structures. The method obtains the solution from alternating independently between the FEM solution for an uncracked body and the crack solution in an infinite body. In the paper, the finite element alternating method is extended in order to obtain the elastic-plastic stress fields of a three dimensional inner crack. The three dimensional crack solutions for an infinite body were obtained using symmetric Galerkin boundary element method. As an example of a three dimensional inner crack, a penny-shaped crack in a finite body was analyzed and the obtained elastc-plastic stress fields were compared with the solution obtained from the finite element analysis with fine mesh. It is noted that in the region ahead of the crack front the stress values from FEAM are close to the values from FEM. But large discrepancy between two values is observed near the crack surfaces.