• Title/Summary/Keyword: finite-element

Search Result 22,252, Processing Time 0.046 seconds

Study on Structural Strength and Application of Composite Material on Microplastic Collecting Device (휴대형 미세플라스틱 수거 장비 경량화 부품 설계 및 구조강도 평가)

  • Myeong-Kyu, Kim;Hyoung-Seock, Seo;Hui-Seung, Park;Sang-Ho, Kim
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.447-455
    • /
    • 2022
  • Currently, the problem of pollution of the marine environment by microplastics is emerging seriously internationally. In this study, to develop a lightweight portable microplastic collection device, the types and number of microplastics in 21 coastal areas nationwide in Korea were investigated. And CFRP (Carbon Fiber Reinforced Plastic), GFRP (Glass Fiber Reinforced Plastic), ABS (Acrylonitrile Butadiene Styrene copolymer) and aluminum were applied for design and analysis of microplastic collection device to have the durability, corrosion resistance and lightweight. As a result of sample collection and classification from the shore, it was confirmed that microplastics were distributed the most in Hamdeok beach, and the polystyrene was found to be mainly distributed microplastics. Particle information through coastal field survey and CFD (Computational Fluid Dynamics) analysis were used to analyze the flow rate and distribution of particles such as sand and impurities, which were applied to the structural analysis of the cyclone device using the finite element method. As a result of structural analysis considering the particle impact inside the cyclone device, the structural safety was examined as remarkable in the order of CFRP, GFRP, aluminum, and ABS. In the view of weight reduction, CFRP could be reduced in weight by 53%, GFRP by 47%, and ABS by 61% compared to aluminum for the cyclone device.

Multi-fidelity uncertainty quantification of high Reynolds number turbulent flow around a rectangular 5:1 Cylinder

  • Sakuma, Mayu;Pepper, Nick;Warnakulasuriya, Suneth;Montomoli, Francesco;Wuch-ner, Roland;Bletzinger, Kai-Uwe
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.127-136
    • /
    • 2022
  • In this work a multi-fidelity non-intrusive polynomial chaos (MF-NIPC) has been applied to a structural wind engineering problem in architectural design for the first time. In architectural design it is important to design structures that are safe in a range of wind directions and speeds. For this reason, the computational models used to design buildings and bridges must account for the uncertainties associated with the interaction between the structure and wind. In order to use the numerical simulations for the design, the numerical models must be validated by experi-mental data, and uncertainties contained in the experiments should also be taken into account. Uncertainty Quantifi-cation has been increasingly used for CFD simulations to consider such uncertainties. Typically, CFD simulations are computationally expensive, motivating the increased interest in multi-fidelity methods due to their ability to lev-erage limited data sets of high-fidelity data with evaluations of more computationally inexpensive models. Previous-ly, the multi-fidelity framework has been applied to CFD simulations for the purposes of optimization, rather than for the statistical assessment of candidate design. In this paper MF-NIPC method is applied to flow around a rectan-gular 5:1 cylinder, which has been thoroughly investigated for architectural design. The purpose of UQ is validation of numerical simulation results with experimental data, therefore the radius of curvature of the rectangular cylinder corners and the angle of attack are considered to be random variables, which are known to contain uncertainties when wind tunnel tests are carried out. Computational Fluid Dynamics (CFD) simulations are solved by a solver that employs the Finite Element Method (FEM) for two turbulence modeling approaches of the incompressible Navier-Stokes equations: Unsteady Reynolds Averaged Navier Stokes (URANS) and the Large Eddy simulation (LES). The results of the uncertainty analysis with CFD are compared to experimental data in terms of time-averaged pressure coefficients and bulk parameters. In addition, the accuracy and efficiency of the multi-fidelity framework is demonstrated through a comparison with the results of the high-fidelity model.

Performance Evaluation of Multi-Friction Dampers for Seismic Retrofitting of Structures (구조물 내진보강을 위한 다중 마찰댐퍼의 성능 평가)

  • Kim, Sung-Bae;Kwon, Hyung-O;Lee, Jong-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.54-63
    • /
    • 2022
  • This paper is a study on the friction damper, which is one of the seismic reinforcement devices for structures. This study developed a damper by replacing the internal friction material with ultra high molecular weight polyethylene (UHMWPE), a type of composite material. In addition, this study applied a multi-friction method in which the internal structure where frictional force is generated is laminated in several layers. To verify the performance of the developed multi-friction damper, this study performed a characteristic analysis test for the basic physical properties, wear characteristics, and disc springs of the material. As a result of the wear test, the mass reduction rate of UHMWPE was 0.003%, which showed the best performance among the friction materials based on composite materials. Regarding the disc spring, this study secured the design basic data from the finite element analysis and experimental test results. Moreover, to confirm the quality stability of the developed multi-friction damper, this study performed an seismic load test on the damping device and the friction force change according to the torque value. The quality performance test result showed a linear frictional force change according to the torque value adjustment. As a result of the seismic load test, the allowable error of the friction damper was less than 15%, which is the standard required by the design standards, so it satisfies the requirements for seismic reinforcement devices.

A Study on Shrinkage Crack of Steel Composite Concrete Box Structure (Transfer Girder) (강합성 콘크리트 박스구조물(트랜스퍼 거더)의 건조수축 균열에 대한 연구)

  • Choi, Jung-Youl;Kim, Dae-Ill
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.685-691
    • /
    • 2022
  • This study was based on the steel composite concrete box structure (Transfer girder) which was installed to support the skyscrapers directly above the subway line. In this study, it was analytically proved that the cause of cracks on the steel composite concrete box structure were the shrinkage cracks by comparing the results of crack investigation and numerical analysis. As the results, it was found that the internal temperature difference between concrete and steel members occurred according to the shape of the steel frame embedded in concrete, the location of vertical stiffener, and the closed section area. The narrower spacing of vertical stiffener was occurred the internal temperature concentration of the structure and the temperature difference increased. And the location of higher thermal strain and temperature were similar to the location of actual cracks by the visual inspection. Therefore, the internal temperature concentration parts were formed according to the presence and spacing of the vertical stiffeners and the inspection passage in the central part of the structure. The shrinkage cracks were occurred by the restrained of temperature expansion and contraction of the concrete. As the results of this study, it was important to separate and manage the non-structural cracks caused by shrinkage and the structural cracks in the maintenance of serviced steel-composite concrete structures.

Stiffness Reduction Effect of Vertically Divided Reinforced Concrete Shear Walls Under Cyclic Loading (반복하중을 받는 수직분할된 철근콘크리트 전단벽의 강성저감효과)

  • Hwangbo, Dong-Sun;Son, Dong-Hee;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.103-110
    • /
    • 2022
  • The purpose of this study is to experimentally evaluate the stiffness and strength reduction according to the reinforcing bar details of the vertically divided reinforced concrete shear walls. To confirm the effect of reducing strength and stiffness according to vertical division, four real-scale specimens were fabricated and repeated lateral loading tests were performed. As a result of the experiment, it was confirmed that the strength and stiffness were decreased according to the vertical division. In particular, as the stiffness reduction rate is greater than the strength reduction rate, it is expected that safety against extreme strength can be secured when the load is redistributed according to vertical division. As a result of checking the crack pattern, a diagonal crack occurred in the wall subjected to compression control among the divided walls. It was confirmed that two neutral axes occurred after division, and the reversed strain distribution appeared in the upper part, showing the double curvature pattern. In future studies, it is necessary to evaluate the stiffness reduction rate considering the effective height of the wall, to evaluate additional variables such as wall aspect ratio, and to conduct analytical studies on various walls using finite element analysis.

Cause Analysis for Sleeper Damage of Sleeper Floating Track in Urban Transit (도시철도 침목플로팅궤도의 침목손상 원인 분석)

  • Choi, Jung-Youl;Shin, Hwang-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.667-674
    • /
    • 2022
  • In this study, the correlation between the damage type and operating conditions of the sleepers was analyzed based on the design data and visual inspection results for the concrete sleepers of the sleeper floating track (STEDEF) that have been in operation for more than 20 years. It appeared in the form of cracks, breakages, and breaks in the concrete at the center and tie bar contact and buried areas. As a result of the numerical analysis, it was analyzed that the change in the left and right spring stiffness of the sleeper resilience pad increases the maximum stress, tensile stress, compressive stress, and displacement of the concrete sleeper, and stress concentration in the concrete at the tie bar contact area. It was proved analytically that the sleeper resilience pad can affect the damage of the concrete sleeper. Therefore, damage of concrete sleepers in the sleeper floating track in urban transit could be caused by changes in spring stiffness of sleeper resilience pads. It was reviewed that preventive maintenance such as improvement and timely replacement of sleeper resilience pads was necessary.

A Study on the Vibration Analysis of Spindle Housing with High Strength Aluminum of 2NC Head in Five-axis Cutting Machine Training (5축 절삭가공기 교육 중 2NC 헤드의 고강도 알루미늄을 적용한 스핀들 하우징의 극한 조건의 진동해석에 관한 연구)

  • Lee, Ji Woong
    • Journal of Practical Engineering Education
    • /
    • v.14 no.1
    • /
    • pp.119-125
    • /
    • 2022
  • Materials used for education are materials such as SM20C, Al6061, and acrylic. SM20C materials are carbon steel and are often used in certification tests and functional competitions, but are also widely used in industrial sites. The Al6061 material is said to be a material that has lower hardness and stronger flexibility than carbon steel, so it is a material that generates a lot of compositional selection of tools. If students are taught practical training using acrylic materials, vibration occurs due to excessive cutting in some parts and damage to the tool occurs. In this process, we examine to what extent the impact on the 2NC head, which is a five-axis equipment, can affect precision control. The weakest part of the five-axis equipment can be said to be the weakest part of the head that controls the AC axis. When the accuracy and cumulative tolerance of this part occur, the accuracy of all products decreases. Therefore, the core part of the 2NC head, the spindle housing, was carried out using an Al7075 T6 (Alcoa, USA) material. In the process of vibration and cutting applied to this material, the analysis was conducted to find out the value applied to the finite element analysis under extreme conditions. It is hoped that this analysis data will help students see and understand the structure of 5-axis machining rather than 5-axis cutting.

A Comparative Study on the Effect of Tamping Materials on the Impact Efficiency at Blasting Work (발파작업 시 충전매질에 따른 발파효과 비교 연구)

  • Bae, Sang-Soo;Han, Woo-Jin;Jang, Seung-Yup;Bang, Myung-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • This study simulated the shock wave propagation through the tamping material between explosives and hole wall at blasting works and verified the effect of tamping materials. The Arbitrary Lagrangian-Eulerian(ALE) method was selected to model the mixture of solid (Lagrangian) and fluid (Eulerian). The time series analysis was carried out during blasting process time. Explosives and tamping materials (air or water) were modeled with finite element mesh and the hole wall was assumed as a rigid body that can determine the propagation velocity and shock force hitting the hole wall from starting point (explosives). The numerical simulation results show that the propagation velocity and shock force in case of water were larger than those in case of air. In addition, the real site at blasting work was modeled and simulated. The rock was treated as elasto-plastic material. The results demonstrate that the instantaneous shock force was larger and the demolished block size was smaller in water than in air. On the contrary, the impact in the back side of explosives hole was smaller in water, because considerable amount of shock energy was used to demolish the rock, but the propagation of compression through solid becomes smaller due to the damping effect by rock demolition. Therefore, It can be proven that the water as the tamping media was more profitable than air.

A Study on the Field Application to Axial Stiffness Applying Corner Strut of Retainingwall Using Numerical Analysis (수치해석을 이용한 흙막이벽체의 사보강버팀보에 적용하는 축강성에 대한 현장 적용성 연구)

  • Lee, Yeong-Jin;Lee, Soung-Kyu;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.39-48
    • /
    • 2022
  • Unlike the horizontal strut, the corner strut causes bending behavior by the installation angle when soil pressure occurs, so there is a limit to its application as a elasto plastic method that requires only the axial stiffness of struts. Therefore, this study attempted to approach a method of modifying axial stiffness data to present an analysis method for corner struts in elasto plastic method, and linear elasticity analysis was used for this. And, through Linear elasticity analysis, axial stiffness data for corner struts installed at the actual site were calculated. The behavior of the retainingwall was confirmed by applying the calculated axial stiffness data of corner struts to elasto plastic method, and its applicability was evaluated by comparing it with the measurement results and the finite element analysis results. As a result of the study, when the axial stiffness data of the corner struts was applied using Linear elasticity analysis(Case 1, Case 3), the axial stiffness data decreased to 9% to 17% compared to the general method of applying the axial stiffness of the struts(Case 2, Case 4), and the displacement of the retainingwall increased to 25.33% to 64.42%. Comparing this result with the measurement results, when Linear elasticity analysis was used(Case 1, Case 3), the behavior of the retainingwall during the elasto plastic method was better shown.

A Study on Efficient Deconstruction of Supporters with Response Ratio (응답비를 고려한 효율적인 버팀보 해체방안에 관한연구)

  • Choi, Jung-Youl;Park, Sang-Wook;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.469-475
    • /
    • 2022
  • As the recent structure construction is constructed as a large-scale and deep underground excavation in close proximity to the building, the installation of retaining wall and supporters (Struts) has become complicated, and the number of supporters to avoid interference of the structural slab has increased. This construction process becomes a factor that causes an increase in construction joints of a structure, leakage and an increase in wall cracks. In addition, this reduced the durability and workability of the structure and led to an increase in the construction period. This study planned to dismantle the two struts simultaneously as a plan to reduce the construction joints, and corrected the earth pressure by assuming the reaction force value by the initial earth pressure and the measured data as the response ratio. After recalculating the corrected earth pressure through the iterative trial method, it was verified by numerical analysis that simultaneous disassembly of the two struts was possible. As a result of numerical analysis applying the final corrected earth pressure, the measured value for the design reaction force was found to be up to 197%. It was analyzed that this was due to the effect of grouting on the ground and some underestimation of the ground characteristics during design. Based on the result of calculating the corrected earth pressure in consideration of the response ratio performed in this study, it was proved analytically that the improvement of the brace dismantling process is possible. In addition, it was considered that the overall construction period could be shortened by reducing cracks due to leakage and improving workability by reducing construction joints. However, to apply the proposed method of this study, it is judged that sufficient estimations are necessary as there are differences in ground conditions, temporary facilities, and reinforcement methods for each site.