• Title/Summary/Keyword: finite topology

Search Result 263, Processing Time 0.021 seconds

Topology Optimization of a Brake Pad to Avoid the Brake Moan Noise Using Genetic Algorithm (Brake Moan Noise 소피를 위한 Brake Pad 위상최적화의 GA적용)

  • 한상훈;윤덕현;이종수;유정훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.216-222
    • /
    • 2002
  • Brake Moan is a laud and strong noise occurring at any vehicle speed over 2 mph as a low frequency in below 600Hz. In this study, we targeted to shift the unstable mode that causes the brake moan from the moats frequency range to sufficiently higher frequency range to avoid the moan phenomenon. We simulated the finite element model and found out the nodes in which the brake moan occurs the most and we regarded the boundary and its relationship between the brake pad and the rotor as a spring coefficient k. With the binary set of the spring coefficient k, we finally used genetic algorithm (GA) to get the optimal topology of the brake pad and its shape to avoid the brake moan. The final result remarkably shows that genetic algorithm can be used in topology optimization procedures requiring complex eigenvalue problems.

SECOND CLASSICAL ZARISKI TOPOLOGY ON SECOND SPECTRUM OF LATTICE MODULES

  • Girase, Pradip;Borkar, Vandeo;Phadatare, Narayan
    • Korean Journal of Mathematics
    • /
    • v.28 no.3
    • /
    • pp.439-447
    • /
    • 2020
  • Let M be a lattice module over a C-lattice L. Let Specs(M) be the collection of all second elements of M. In this paper, we consider a topology on Specs(M), called the second classical Zariski topology as a generalization of concepts in modules and investigate the interplay between the algebraic properties of a lattice module M and the topological properties of Specs(M). We investigate this topological space from the point of view of spectral spaces. We show that Specs(M) is always T0-space and each finite irreducible closed subset of Specs(M) has a generic point.

FEA & Topology Optimization of Single-Phase Induction Motor for Rotary Compressor (로터리 컴프레서용 단상 유도모터의 유한요소해석 및 위상 최적설계)

  • Wang, Se-Myung;Kang, Je-Nam
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.351-356
    • /
    • 2002
  • The oil circulation rate (OCR) of the rotary compressor is a crucial factor affecting the performance and reliability of air-conditioning systems. In this paper, topology optimization of the single-phase induction motor of rotary compressor is carried out for reducing the OCR. The nonlinear transient characteristic of single-phase induction motor for rotary compressor is analyzed by using FLUX2D. The topology optimization for electromagnetic systems is developed using the finite element method (FEM). The topology optimization is applied to a single-phase induction motor for reducing the OCR. For validation, optimize induction motors are manufactured and tested.

Optimal Shape Design of Dielectric Micro Lens Using FDTD and Topology Optimization

  • Chung, Young-Seek;Lee, Byung-Je;Kim, Sung-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.286-293
    • /
    • 2009
  • In this paper, we present an optimal shape design method for a dielectric microlens which is used to focus an incoming infrared plane wave in wideband, by exploiting the finite difference time domain (FDTD) technique and the topology optimization technique. Topology optimization is a scheme to search an optimal shape by adjusting the material properties, which are design variables, within the design space. And by introducing the adjoint variable method, we can effectively calculate a derivative of the objective function with respect to the design variable. To verify the proposed method, a shape design problem of a dielectric microlens is tested when illuminated by a transverse electric (TE)-polarized infrared plane wave. In this problem, the design variable is the dielectric constant within the design space of a dielectric microlens. The design objective is to maximally focus the incoming magnetic field at a specific point in wideband.

Underwater Acoustic Lens Design Using Topology Optimization (위상최적화를 이용한 수중음향렌즈의 설계)

  • Jang, Gang-Won;Tran, Quang Dat;Cho, Wan-Ho;Kwon, Hyu-Sang;Cho, Seung Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.555-556
    • /
    • 2014
  • In this paper, topology optimization of two-dimensional acoustic lenses is presented by using the phase field method. The objective of the optimization is to maximize the acoustic pressure at a specified domain inside the acoustic domain for a given frequency, and the constraint is imposed on the amount of the material of the acoustic lens. Topology optimization of two-dimensional acoustic lenses are obtained as the steady state of the phase transition described by the Allen-Cahn equation. The Helmholtz equation modeling the wave propagation is solved by using a finite element method. The effectiveness of the proposed method is verified by applying it for several two-dimensional acoustic lens system design problems.

  • PDF

Linear Motor Design by using Topology Optimization (위상최적설계를 이용한 리니어 모터의 설계)

  • Lee, Heon;Kang, Je-Nam;Wang, Se-Myung;Hong, Eon-Pyo;Park, Kyeong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.843-845
    • /
    • 2003
  • In this paper, the design of the outer core which is one part of the linear motor is investigated by using the topology optimization and FEM. The object functions are to reduce the outer core area of the linear motor with the maximum magnetic energy in airgap. For topology optimization, the finite element model is made through the result of ANSYS, and the sensitivity calculation is done using ANSTOP(developed general software for topology optimization of electromagnetics). In ANSTOP, the optimization routine is implemented using SLP in DOT and the ANSYS is used as a function solver.

  • PDF

Topology optimization of Reissner-Mindlin plates using multi-material discrete shear gap method

  • Minh-Ngoc Nguyen;Wonsik Jung;Soomi Shin;Joowon Kang;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.365-374
    • /
    • 2023
  • This paper presents a new scheme for constructing locking-free finite elements in thick and thin plates, called Discrete Shear Gap element (DSG), using multiphase material topology optimization for triangular elements of Reissner-Mindlin plates. Besides, common methods are also presented in this article, such as quadrilateral element (Q4) and reduced integration method. Moreover, when the plate gets too thin, the transverse shear-locking problem arises. To avoid that phenomenon, the stabilized discrete shear gap technique is utilized in the DSG3 system stiffness matrix formulation. The accuracy and efficiency of DSG are demonstrated by the numerical examples, and many superior properties are presented, such as being a strong competitor to the common kind of Q4 elements in the static topology optimization and its computed results are confirmed against those derived from the three-node triangular element, and other existing solutions.

A smooth boundary scheme-based topology optimization for functionally graded structures with discontinuities

  • Thanh T. Banh;Luu G. Nam;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.73-88
    • /
    • 2023
  • This paper presents a novel implicit level set method for topology optimization of functionally graded (FG) structures with pre-existing discontinuities (pre-cracks) using radial basis functions (RBF). The mathematical formulation of the optimization problem is developed by incorporating RBF-based nodal densities as design variables and minimizing compliance as the objective function. To accurately capture crack-tip behavior, crack-tip enrichment functions are introduced, and an eXtended Finite Element Method (X-FEM) is employed for analyzing the mechanical response of FG structures with strong discontinuities. The enforcement of boundary conditions is achieved using the Hamilton-Jacobi method. The study provides detailed mathematical expressions for topology optimization of systems with defects using FG materials. Numerical examples are presented to demonstrate the efficiency and reliability of the proposed methodology.

Parallelized Topology Design Optimization of the Frame of Human Powered Vessel (인력선 프레임의 병렬화 위상 최적설계)

  • Kim, Hyun-Suk;Lee, Ki-Myung;Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • Topology design optimization is a method to determine the optimal distribution of material that yields the minimal compliance of structures, satisfying the constraint of allowable material volume. The method is easy to implement and widely used so that it becomes a powerful design tool in various disciplines. In this paper, a large-scale topology design optimization method is developed using the efficient adjoint sensitivity and optimality criteria methods. Parallel computing technique is required for the efficient topology optimization as well as the precise analysis of large-scale problems. Parallelized finite element analysis consists of the domain decomposition and the boundary communication. The preconditioned conjugate gradient method is employed for the analysis of decomposed sub-domains. The developed parallel computing method in topology optimization is utilized to determine the optimal structural layout of human powered vessel.

Topology Optimization of Shell Structures Using Adaptive Inner-Front(AIF) Level Set Method (적응적 내부 경계를 갖는 레벨셋 방법을 이용한 쉘 구조물의 위상최적설계)

  • Park, Kang-Soo;Youn, Sung-Kie
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.157-162
    • /
    • 2007
  • A new level set based topology optimization employing inner-front creation algorithm is presented. In the conventional level set based topology optimization, the optimum topology strongly depends on the initial level set distribution due to the incapability of inner-front creation during optimization process. In the present work, in this regard, an inner-front creation algorithm is proposed. in which the sizes. shapes. positions, and number of new inner-fronts during the optimization process can be globally and consistently identified by considering both the value of a given criterion for inner-front creation and the occupied volume (area) of material domain. To facilitate the inner-front creation process, the inner-front creation map which corresponds to the discrete valued criterion of inner-front creation is applied to the level set function. In order to regularize the design domain during the optimization process, the edge smoothing is carried out by solving the edge smoothing partial differential equation (PDE). Updating the level set function during the optimization process, in the present work, the least-squares finite element method (LSFEM) is employed. As demonstrative examples for the flexibility and usefulness of the proposed method. the level set based topology optimization considering lightweight design of 3D shell structure is carried out.

  • PDF