• Title/Summary/Keyword: finite strip method

Search Result 214, Processing Time 0.022 seconds

Buffeting response of long suspension bridges to skew winds

  • Xu, Y.L.;Zhu, L.D.;Xiang, H.F.
    • Wind and Structures
    • /
    • v.6 no.3
    • /
    • pp.179-196
    • /
    • 2003
  • A long suspension bridge is often located within a unique wind environment, and strong winds at the site seldom attack the bridge at a right angle to its long axis. This paper thus investigates the buffeting response of long suspension bridges to skew winds. The conventional buffeting analysis in the frequency domain is first improved to take into account skew winds based on the quasi-steady theory and the oblique strip theory in conjunction with the finite element method and the pseudo-excitation method. The aerodynamic coefficients and flutter derivatives of the Tsing Ma suspension bridge deck under skew winds, which are required in the improved buffeting analysis, are then measured in a wind tunnel using specially designed test rigs. The field measurement data, which were recorded during Typhoon Sam in 1999 by the Wind And Structural Health Monitoring System (WASHMS) installed on the Tsing Ma Bridge, are analyzed to obtain both wind characteristics and buffeting responses. Finally, the field measured buffeting responses of the Tsing Ma Bridge are compared with those from the computer simulation using the improved method and the aerodynamic coefficients and flutter derivatives measured under skew winds. The comparison is found satisfactory in general.

The Earth Pressure on the Effect of Surcharge Load at the Narrowly Backfilled Soil (좁은 공간 되메움 지반에서의 상재하 영향에 의한 토압)

  • 문창열;이종규
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.165-180
    • /
    • 1997
  • The structure such as underground external walls of buildings, conduit and box culvert supports the surcharge loads (point, strip and line loads) . The vertical and horizontal stresses in a soil mass depend on the backfill width and wall friction, etc. The investigations described in this paper is designed to identify the magnitude and the distributions of the lateral and vertical pressure which is occurred by the narrowly backfilled soil in an open cut by the surcharge loads. For these purposes, model tests were performed for various width of backfill in a model test box by considering the wall friction using carbon rods. The results of test were compared with the theories of Weissenbach and VS Army Code and also with the results of the numerical analysis using finite difference method which introduces Mohr-Coulomb failure hypothesis.

  • PDF

Local Deformation Analysis of the Orthotropic Steel Bridge Deck Due to Wheel Loadings Using FSM and FEM (윤하중에 의한 강바닥판 교면포장의 종방향균열 관련 수치해석법 개발)

  • Jeong, Jin Seok;Jung, Myung Rag;Ock, Chang Kwon;Lee, Won Tae;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.243-251
    • /
    • 2016
  • Longitudinally structural cracks are sometimes observed in the pavement on steel plate deck bridges because traffic truck loadings can cause large local deformations of the thin deck plate stiffened by longitudinal and transverse beams. In this study, an improved finite strip method using flat-shell strip, prism, and link elements is presented to investigate local deformations of steel decks with pavements in which flexural and torsional stiffness effects of thin floor beams are rigorously taken into account. A simplified deck model extracted from steel plate-girder bridges is analyzed using the developed FSM and the commercial FE program, ABAQUS and also, their numerical results are compared and discussed.

Buckling of FGM elliptical cylindrical shell under follower lateral pressure

  • Moradi, Alireza;Poorveis, Davood;Khajehdezfuly, Amin
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.175-191
    • /
    • 2022
  • A review of previous studies shows that although there is a considerable difference between buckling loads of structures under follower and non-follower lateral loads, only the buckling load of FGM elliptical cylindrical shell under non-follower lateral load was investigated in the literature. This study is the first to obtain the buckling load of elliptical FGM cylindrical shells under follower lateral load and also make a comparison between buckling loads of elliptical FGM cylindrical shells under follower and non-follower lateral loads. Moreover, this research is the first one to derive the load potential function of elliptical cylindrical shell. In this regard, the FGM cylindrical elliptical shell was modeled using the semi-analytical finite strip method and based on the First Shear Deformation Theory (FSDT). The shell is discretized by strip elements aligned in the longitudinal direction. The Lagrangian and harmonic shape functions were considered in the circumference and longitudinal directions, respectively. The buckling pressure of the shell under follower and non-follower lateral loads was obtained from eigenvalue problem. The results obtained from the model were compared with those presented in the literature to evaluate the validity of the model. A comparison index was defined to compare the buckling loads of the shell under follower and non-follower lateral load. A parametric study was carried out to investigate the effects of material properties and shell geometry characteristics on the comparison index. For the elliptical cylindrical shells with length-to-radius ratio greater than 16 and major-to-minor axis ratio greater than 0.6, the comparison index reaches to more than 20 percent which is significant. Moreover, the maximum difference is about 30 percent in some cases. The results obtained from the parametric study indicate that the buckling load of long elliptical cylindrical shell under non-follower load is not reliable.

Aeroelastic Analysis of Bearingless Rotor Systems in Hover and Forward Flight (무 베어링 로터 시스템의 정지 및 전진 비행시 공력탄성학적 해석)

  • Lim, In-Gyu;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.503-508
    • /
    • 2007
  • In this study, the aeroelastic response and stability of bearingless rotors are investigated using a large deflection beam theory. The outboard main blade, flexbeam, and torque tube are all assumed to be an elastic beam undergoing arbitrary large displacements and rotations. The finite element equations of motion obtained from Hamilton's principle. Two-dimensional quasi-steady strip theory is used to evaluate aerodynamic forces. In hover, the modal approach method based on coupled rotating natural modes is used for the stability analysis. In forward flight, the nonlinear periodic blade steady response is obtained by integrating the full finite element equation in time through a coupled trim procedure with a vehicle trim. The results of the full finite element analysis using the large deflection beam theory are compared with those of a previously published modal analysis using the moderate deflection-type beam theory.

Prediction of Residual Deformation and Stress Distribution for a Thermo-Elastic-Plastic Beam Using a Simplified Numerical Analysis (간이 수치해석에 의한 열탄소성보의 잔류변형 및 응력분포의 예측)

  • S.H. Jun;K. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.22-34
    • /
    • 1996
  • Regarding the plate bending process by line heating method, in this study a simplified numerical analysis is performed for a beam model to predict its residual deformation and stress distribution. Using the modified strip theory and beam finite element method, a PC-based simulation program is developed for a thermo-elastic-plastic beam. The plate bending problem can be approximately replaced by a beam model using distributed springs to account for the effect of adjacent strips. The spring constants are chosen as the best fit with experiments. In this paper, it is assumed that the temperature distribution is already given and the temperature-dependent material properties are considered. To verify the simulation program, the results using present numerical algorithm are compared with other published experimental results and similar numerical studies. The comparison shows good agreement. The present PC-based computer program also shows good efficiency in computing time.

  • PDF

Development of a Direct Structural Analysis System for Floating Type Ocean Structures (부유식 해양구조물의 직접구조해석 시스템 개발)

  • Seong-Whan Park;Jeong-Youl Lee;Chae-Whan Rim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.46-53
    • /
    • 1998
  • The aim of the present study is to develop a direct structural analysis system for more reliable and effective structural safety estimation of floating tripe ocean structures. In this system, the following three modules are included; i.e., a rigid body motion analysis module based on the three dimensional panel method, a structural analysis module, and a stochastic analysis module based on short and long term spectral analysis techniques. The structural analysis module consists of the general purpose finite element analysis program NASTRAN and the automatic load data generation program LOADGEN. As an illustrative example, the developed system is applied to structural design of a PILOT Barge Mounted Plant(BMP). Results of the structural analysis are compared with those obtained using a two dimensional strip method.

  • PDF

The fabrication of microwave circulator using polycrystalline $Y_{2.4}Ca_{0.3}Sn_{0.3}Fe_{5-x}Al_xO_{12}$ garnets (다결정 $Y_{2.4}Ca_{0.3}Sn_{0.3}Fe_{5-x}Al_xO_{12}$ 가네트 자성체를 이용한 마이크로파대 서큘레이터 구현)

  • 박정래;김태홍;김명수;한진우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2573-2584
    • /
    • 1997
  • In this paper, Ca, Sn substitute YIC(Yttrium Iron Garnet) ceramics were fabricated with Al substitutions in Fe sites. The strip-line circulator was designed and the properties of fabricated ciculator were measured. When the electric, magnetic and microwave properties were measured in Ca, Sn substituted YIG with Al subsititions, the relative permittivity and perfmeability in microwave frequencies were 15.623 and 0.972, repectively. For $Y_{2.4}Ca_{0.3}Sn_{0.3}Fe_{5-x}Al_xO_{12}$ garnet ceramics sintered at $1450^{\circ}C$, the ferrimagnetic resonance line width $\Delta{H}$) of 42 Oe and the saturation magnetization of 487 G were measured at 10 GHz. The strip-line circulator was simulated with 3-D FEM(Finite Element Method) software and designed to have insertion loss of 0.8dB, return loss of 25dB, isolation of 35dB at the center frequency of 1.9GHz. The fabricated strition loss of 0.8B, reture loss of 25dB, isolation of 35dB at the center frequency of 1.9GHz. The fabricated strip-line junction circulator using above YIG ceramics had insertion loss of 0.869dB, return loss of 26.955dB, isolation of 44.409dB at the center frequency of 1.9GHz.

  • PDF

Buckling behavior of strengthened perforated plates under shear loading

  • Cheng, Bin;Li, Chun
    • Steel and Composite Structures
    • /
    • v.13 no.4
    • /
    • pp.367-382
    • /
    • 2012
  • This paper is dedicated to the buckling behaviors of strengthened perforated plates under edge shear loading, which is a typical load pattern of steel plates in civil engineering, especially in plate and box girders. The square plates considered each has a centric circular hole and is simply supported on four edges in the out-of-plane direction. Three types of strengthening stiffeners named ringed stiffener (RS), flat stiffener (FSA and FSB) and strip stiffener (SSA, SSB and SSC) are mainly discussed. The finite element method (FEM) has been employed to analyse the elastic and elasto-plastic buckling behavior of unstrengthened and strengthened perforated plates. Results show that most of the strengthened perforated plates behave higher buckling strengths than the unstrengthened ones, while the enhancements in elastic buckling stress and elasto-plastic ultimate strength are closely related to stiffener types as well as plate geometric parameters including plate slenderness ratio and hole diameter to plate width ratio. The critical slenderness ratios of shear loaded strengthened perforated plates, which determine the practical buckling pattern (i.e., elastic or elasto-plastic buckling) of the plates, are also studied. Based on the contrastive analyses of strengthening efficiency considering the influence of stiffener consumption, the most efficient cutout-strengthening methods for shear loaded perforated square plates with different slenderness ratios and circular hole diameter to plate width ratios are preliminarily identified.

A Study on the Buckling Behavior of the Web of Box Girders (상자형 복부판의 좌굴 거동에 관한 연구)

  • Lee, Sang Woo;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.37-49
    • /
    • 1997
  • The buckling behavior of the web of steel girders are largely dependent on the size and the location of stiffeners and the restraining effect of top and bottom flanges. Elastic and inelastic buckling analyses based or the Spline Finite Strip Method were executed to study the stiffening effect of the longitudinal stiffener on the web of box girders and to find how the top and bottom flanges had effects on the web, where geometric boundary conditions were limited by both hinged, both fixed and the flange sections. The basic assumption for the longitudinal end boundary conditions was that the vertical stiffeners had the rigidity enough to force nil deflection line on the web panel so that the junction line between web and vertical stiffener was assumed to be hinged boundary conditions. The provisions on the longitudinal stiffener of the plate and box girders of the Korean Standard Highway Bridge Specifications(1995) and AASHTO Specifications(1994 LRFD) were compared with the results obtained numerically for the various longitudinal stiffener size of box girders. Simple equations and design curves for the longitudinal stiffener of the web were proposed for the practical use.

  • PDF