• Title/Summary/Keyword: finite strip

Search Result 333, Processing Time 0.035 seconds

Stress Analysis of Cold Rolled Strip Coiling Process (냉연재 권취공정의 응력해석)

  • Park, Kyu Tae;Park, Yong Hui;Park, Hyun Chul;Won, Sung Yeun;Hong, Wan Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.409-414
    • /
    • 2017
  • In the thin strip coiling process, it is necessary to use a sleeve with a mandrel to prevent excessive deformation of the strip. The stress distribution in the sleeve and strip is an important factor to determine the size of the sleeve. However, an experimental approach is almost impossible because of the accumulation of high pressure. A finite element (FE) model of the strip coiling process was developed in this study. Then, the radial and hoop stresses on the sleeve and strip were investigated using FE analyses. The theoretical values and analysis results under idealized conditions were compared to verify the FE model. The effect of the strip thickness on the stress distribution was also investigated. The radial stress increased by 6.3 times for a 1-mm-thick strip at the coil starting point. The radial stress at the sleeve increased by 14.8 % with a stacked thickness of 90 mm because of the reaction force applied by the mandrel.

An exact finite strip for the calculation of relative post-buckling stiffness of isotropic plates

  • Ovesy, H.R.;Ghannadpour, S.A.M.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.181-210
    • /
    • 2009
  • This paper presents the theoretical developments of an exact finite strip for the buckling and initial post-buckling analyses of isotropic flat plates. The so-called exact finite strip is assumed to be simply supported out-of-plane at the loaded ends. The strip is developed based on the concept that it is effectively a plate. The present method, which is designated by the name Full-analytical Finite Strip Method in this paper, provides an efficient and extremely accurate buckling solution. In the development process, the Von-Karman's equilibrium equation is solved exactly to obtain the buckling loads and the corresponding form of out-of-plane buckling deflection modes. The investigation of thin flat plate buckling behavior is then extended to an initial post-buckling study with the assumption that the deflected form immediately after the buckling is the same as that obtained for the buckling. It is noted that in the present method, only one of the calculated out-of-plane buckling deflection modes, corresponding to the lowest buckling load, i.e., the first mode is used for the initial post-buckling study. Thus, the postbuckling study is effectively a single-term analysis, which is attempted by utilizing the so-called semi-energy method. In this method, the Von-Karman's compatibility equation governing the behavior of isotropic flat plates is used together with a consideration of the total strain energy of the plate. Through the solution of the compatibility equation, the in-plane displacement functions which are themselves related to the Airy stress function are developed in terms of the unknown coefficient in the assumed out-of-plane deflection function. These in-plane and out-of-plane deflected functions are then substituted in the total strain energy expressions and the theorem of minimum total potential energy is applied to solve for the unknown coefficient. The developed method is subsequently applied to analyze the initial postbuckling behavior of some representative thin flat plates for which the results are also obtained through the application of a semi-analytical finite strip method. Through the comparison of the results and the appropriate discussion, the knowledge of the level of capability of the developed method is significantly promoted.

Finite Element Analysis of Edge Fracture of Electrical Steel Strip in Reversible Cold Rolling Mill (가역식 냉간 압연기에서 전기강판의 에지 파단에 관한 유한요소해석)

  • Byon, Sang Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1619-1625
    • /
    • 2012
  • An electrical steel strip is commonly used as a core material in all types of electric transformers and motors. It is produced by a cold rolling process. In this paper, a damage-mechanics-based approach that predicts the edge fracture of an electrical steel strip during cold rolling is presented. We adopted the normal tensile stress criterion and the fracture energy method as a damage initiation criterion and a damage evolution scheme, respectively. We employed finite element analysis (FEA) to simulate crack initiation and propagation at the initial notch located at the edges of the strip. The material constants required in FEA were experimentally obtained by tensile tests using a standard and a notched sheet-type specimen. The results reveal that the edge crack was initiated at the entrance of the roll bite and that it rapidly evolved at the exit. The evolution length of the edge crack increased as the length of the initial notch as well as the front tension reel force of the strip increased.

Wave Propagation in a Strip Plate with Longitudinal Stiffeners (보강재를 가진 무한길이 띠 평판의 진동해석)

  • Kim, Hyungjun;Ryue, Jungsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.512-519
    • /
    • 2013
  • It is important to understand the vibrating behavior of plate structures for its many engineering applications. In this study, the vibration characteristics of strip plates that have finite width and infinite length are investigated theoretically and numerically. The waveguide finite element(WFE) approach, which is an effective tool for studying waveguide structures, is used in this study. The WFE method requires only a cross-sectional finite element model, and uses theoretical harmonic solutions to assess wave propagation along the longitudinal direction. First, WFE results for a simple strip plate are compared with the theoretical results(i.e., dispersion diagrams and point mobilities) to validate the numerical model. Then, in the numerical analysis, different numbers of longitudinal stiffeners are included in the plate model to investigate the effects of stiffeners in terms of the dispersion curves and mobilities. Finally, the dispersion curves of a stiffened double plate are obtained to examine the characteristics of its wave propagation.

Post-buckling finite strip analysis of thick functionally graded plates

  • Hajikazemi, M.;Ovesy, H.R.;Assaee, H.;Sadr, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.569-595
    • /
    • 2014
  • In this paper, a novel semi-energy finite strip method (FSM) is developed based on the concept of first order shear deformation theory (FSDT) in order to attempt the post-buckling solution for thin and relatively thick functionally graded (FG) plates under uniform end-shortening. In order to study the effects of through-the-thickness shear stresses on the post-buckling behavior of FG plates, two previously developed finite strip methods, i.e., semi-energy FSM based on the concept of classical laminated plate theory (CLPT) and a CLPT full-energy FSM, are also implemented. Moreover, the effects of aspect ratio on initial post-buckling stiffness of FG rectangular plates are studied. It has been shown that the variation of the ratio of initial post-buckling stiffness to pre-buckling stiffness ($S^*/S$) with respect to aspects ratios is quite independent of volume fractions of constituents in thin FG plates. It has also been seen that the universal curve representing the variation of ($S^*/S$) with aspect ratio of a FG plate demonstrate a saw shape curve. Moreover, it is revealed that for the thin FG plates in contrast to relatively thick plates, the variations of non-dimensional load versus end-shortening is independent of ceramic-metal volume fraction index. This means that the post-buckling behavior of thin FG plates and the thin pure isotropic plates is similar. The results are discussed in detail and compared with those obtained from finite element method (FEM) of analysis. The study of the results may have a great influence in design of FG plates encountering post-buckling behavior.

The Optimization of Shape Control in High Reduction Rolling in Minimill Process (미니밀에서의 고압하율과 형상변화 최적화 방안에 관한 연구)

  • Choi B. W.;Kim T. H.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.117-120
    • /
    • 2001
  • In hot roiling process, new rolling mills have been apapted to strip rolling but we can usually experience the problem of snaking of strip. This phenomenon was arisen by nonsymmetric rolling and on-centering and cambering of a strip and other mill conditions. Three dimensional analysis for strip rolling predicted the influence of nonsymmetric rolling, off-centering and pair crossing system This study evaluated the fundamental characteristics of snaking of a strip to optimize the operating condition for trouble free rolling.

  • PDF

Parametric Process Design of the Tension Levelling with an Elasto-plastic Finite Element Method (탄소성 유한요소법을 이용한 금속인장교정기의 공정변수 설계)

  • Park S. R.;Lee H. W.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.42-48
    • /
    • 2000
  • This paper is concerned with a simulation-based process design for the tension levelling of metallic strips based on the elasto-plastic finite element analysis with reduced integration and hourglass control. The tension levelling process is performed to elongate the strip plastically in combination of tensile and bending strain by a controlled manner so that all longitudinal fibers in the strip have an approximately equal amount of length and undesirable strip shapes are corrected to the flat shape. The analysis deals with a method for calculating the quantitative level of the curl to investigate the roll arrangements and intermesh suitable to elimination of the curl. The analysis provides the information about the intermesh effect on the amount, the tension effect and distribution of the strain as well as the stress in order to determine the amount of elongation for correction of the irregular shape. The desired elongation is referred to determine the number of work rolls and the value of tension. Especially, the analysis investigates tile effect of the mesh size in the non-steady state finite element analysis on the amount and distribution of the strain.

  • PDF

Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method

  • Khayat, Majid;Dehghan, Seyed Mehdi;Najafgholipour, Mohammad Amir;Baghlani, Abdolhossein
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.735-748
    • /
    • 2018
  • In this study, the semi-analytical finite strip method is adopted to examine the free vibration of cylindrical shells made up of functionally graded material. The properties of functionally graded shells are assumed to be temperature-dependent and vary continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of ceramic and metal. The material properties of the shells and stiffeners are assumed to be continuously graded in the thickness direction. Theoretical formulations based on the smeared stiffeners technique and the classical shell theory with first-order shear deformation theory which accounts for through thickness shear flexibility are employed. The finite strip method is applied to five different shell theories, namely, Donnell, Reissner, Sanders, Novozhilov, and Teng. The approximate procedure is compared favorably with three-dimensional finite elements. Finally, a detailed numerical study is carried out to bring out the effects of power-law index of the functional graded material, stiffeners, and geometry of the shells on the difference between various shell theories. Finally, the importance of choosing the shell theory in simulating the functionally graded cylindrical shells is addressed.

Finite Element Analysis and Experiments of Milli-Part Forming of Strip Bending Using Grain Element (입자요소계를 이용한 유한요소 해석)

  • Ku T.W.;Kim D.J.;Kang B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.266-273
    • /
    • 2002
  • Milli-structure components are classified as a component group whose size is between macro and micro scales, that is, about less than 20mm and larger than 1mm. The bending of these components of thin sheets has a typical phenomenon of bulk deformation because of the forming size. The recent trend towards miniaturization causes an increased demand for parts with very small dimensions. The conceptual miniature bending process enables the production of such parts with high productivity and accuracy. The stress values of the flow curve decrease with miniaturization, which means that coarse grained materials show a higher resistance against deformation, when the grain size is in the range of the sheet thickness. In this paper, a new numerical approach is proposed to simulate intergranular milli-structure in forming by the finite element method. The grain element and grain boundary element are introduced to simulate the milli-structure of strip in the bending. The grain element is used to analyze the deformation of individual grain while the grain boundary element is for the investigation on the movement of the grain boundary. Also, the result of the finite element analysis is confirmed by a series of milli-sized forming experiments.

  • PDF

Dynamic Characteristics of Laminated Shells by Finite Strip Mehod (FSM에 의한 다층 원통쉘의 동적 특성에 관한 연구)

  • Park, Sungjin
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.534-541
    • /
    • 2015
  • This study was presented how to interpret a laminated cylindrical shell having both ends supported condition are simple, and by identifying the three-dimensional stress characteristics. The governing equations were using the concept of finite element assuming the conversion into ordinary differential equations and partial differential equations by numerical analysis using the finite strip method. In particular, a function performed for the three-dimensional laminated cylindrical shell having a simple support condition were analyzed for the case composed of a specific function of the beam consisting of a trigonometric function. Layer material and layer thickness of a steel or concrete, the cylindrical length and the like by varying the parameters variously examine the effects of multi-layer cylindrical shell.