• Title/Summary/Keyword: finite state model

Search Result 881, Processing Time 0.029 seconds

Analytical Solution of Magnetic Field in Permanent-Magnet Eddy-Current Couplings by Considering the Effects of Slots and Iron-Core Protrusions

  • Dai, Xin;Liang, Qinghua;Ren, Chao;Cao, Jiayong;Mo, Jinqiu;Wang, Shigang
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.273-283
    • /
    • 2015
  • In this study, we propose an analytical model for studying magnetic fields in radial-flux permanent-magnet eddy-current couplings by considering the effects of slots and iron-core protrusions on the eddy currents. We focus on the analytical prediction of the air-gap field by considering the influence of eddy currents induced in conducting bars. In the proposed model, the permanent magnet region is treated as the source of a time-varying magnetic field and the moving-conductor eddy current problem is solved based on the resolution of time-harmonic Helmholtz equations. The spatial harmonics in the air gap and in slots, as well as the time harmonics are all considered in the analytical calculation. Based on the proposed field model, the electromagnetic torque is computed by using the Maxwell stress tensor method. Nonlinear finite element analysis is performed to validate the analytical model. The proposed model can be used for permanent-magnet eddy-current couplings with any slot-pole combination.

Analytical and numerical analysis for unbonded flexible risers under axisymmetric loads

  • Guo, Yousong;Chen, Xiqia;Wang, Deyu
    • Ocean Systems Engineering
    • /
    • v.6 no.2
    • /
    • pp.129-141
    • /
    • 2016
  • Due to the structural complexity, the response of a flexible riser under axisymmetric loads is quite difficult to determine. Based on equilibrium conditions, geometrical relations and constitutive equations, an analytical model that can accurately predict the axisymmetric behavior of flexible risers is deduced in this paper. Since the mutual exclusion between the contact pressure and interlayer gap is considered in this model, the influence of the load direction on the structural behavior can be analyzed. Meanwhile, a detailed finite element analysis for unbonded flexible risers is conducted. Based on the analytical and numerical models, the structural response of a typical flexible riser under tension, torsion, internal and outer pressure has been studied in detail. The results are compared with experimental data obtained from the literature, and good agreement is found. Studies have shown that the proposed analytical and numerical models can provide an insightful reference for analysis and design of flexible risers.

Finite Element Analysis of Elasto-Plastic Large Deformation considering the Isotropic Damage (the 1st Report) -Development of Elasto-Plastic Damage Constitutive Model- (등방성 손상을 고려한 탄소성 대변형 문제의 유한요소해석(제1보) -탄소성 손상 구성방정식 개발-)

  • 노인식
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.70-75
    • /
    • 2000
  • In this paper a new constitutive model for ductile materials was proposed. This model can describe the material degradation due to the evolution of isotropic damage during elasto-platic deformation. The plastic flow rule was derived under the framework of thermodynamic approach of continuum damage mechanics(CDM) in which plastic strain hardening parameters and isotropic damage were taken as thermodynamic state variables. And the process to determine material constants for constitutive model using an experimental data was presented.

  • PDF

Analysis of a three-dimensional FEM model of a thin piezoelectric actuator embedded in an infinite host structure

  • Zeng, Xiaohu;Yue, Zhufeng;Zhao, Bin;Wen, S.F.
    • Advances in materials Research
    • /
    • v.3 no.1
    • /
    • pp.237-257
    • /
    • 2014
  • In this paper, we adopted a two-dimensional analytical electro-elastic model to predict the stress distributions of the piezoelectric actuator in 3D case. The actuator was embedded in an elastic host structure under electrical loadings. The problem is reduced to the solution of singular integral equations of the first kind. The interfacial stresses and the axial normal stress in both plane stress state and plane strain state were obtained to study the actuation effects being transferred from the actuator to the host. The stress distributions of the PZT actuator in different length and different thickness were analyzed to guarantee the generality. The validity of the present model has been demonstrated by application of specific examples and comparisons with the corresponding results obtained from the Finite Element Method.

Temperature Effects on Fracture Toughness Parameters for Pipeline Steels

  • Chanda, Sourayon;Ru, C.Q.
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1754-1760
    • /
    • 2018
  • The present article showcases a temperature dependent cohesive zone model (CZM)-based fi nite element simulation of drop weight tear test (DWTT), to analyse fracture behavior of pipeline steel (PS) at different temperatures. By co-relating the key CZM parameters with known mechanical properties of PS at varying temperature, a temperature dependent CZM for PS is proposed. A modified form of Johnson and Cook model has been used for the true stress-strain behavior of PS. The numerical model, using Abaqus/CAE 6.13, has been validated by comparing the predicted results with load-displacement curves obtained from test data. During steady-state crack propagation, toughness parameters (such as CTOA and CTOD) were found to remain fairly constant at a given temperature. These toughness parameters, however, show an exponential increase with increase in temperature. The present paper offers a plausible approach to numerically analyze fracture behavior of PS at varying temperature using a temperature dependent CZM.

Limit State Analysis of Earthern Slope Using a Continuum Mechanics Approach (연속체 역학을 이용한 사면의 한계상태 해석)

  • 서영교
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.141-148
    • /
    • 2000
  • 사면 안정 해석은 주로 파괴 활동면의 전단 강도와 발휘되는 전단 강도의 최대비로서 표현되는 파괴활동의 추정을 위해 기존의 고전적인 방법을 사용하거나 이와 유사한 방법등이 사용되어 왔다. 이러한 방법들은 토질에 있어서의 상호 작용력과 그에 따른 전당력 및 사면 활동면의 반복되는 추정등의 가정으로 불확실성을 내포하고 있다. 본 연구에서는 토질전체를 연속체로 규정하고 비선형 유한요소법을 이용한 토질의 실제 응력과 강도를 정확하게 계산하였다. 사면 안정은 점차적 인증력의 증가로서 사면의 붕괴 활동면이 나타나FEo 까지로 해석되었다. 제시된 방법의 세부적인 사항은 예제를 통하여 설명되어 있다.

  • PDF

Simplified Finite Element Model of an Anchor Bolt Inserted Through Concretes Considering Clamping Forces (체결력을 고려한 콘크리트 삽입 앵커볼트의 간편 유한요소 모델)

  • Noh, Myung Hyun;Lee, Sang Youl;Park, Kyu Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.293-300
    • /
    • 2013
  • In this study we proposed a simplified finite element model of anchor bolt system inserted through concrete structures considering clamping forces. The three different finite element types using LS-DYNA are applied for numerical efficiency of the anchor bolt modeling. Combined beam and solid elements are used to reflect the tension state at internal part of anchor bolt due to torques. The clamping forces due to torques are considered by introducing a compression for a nut plane modeled by beam elements. The numerical examples show good agreement with different element types. Parametric studies are focused on the various effects of different element types on the induced axial and shear forces of anchor bolts considering clamping forces.

Minimum Variance FIR Smoother for Model-based Signals

  • Kwon, Bo-Kyu;Kwon, Wook-Hyun;Han, Soo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2516-2520
    • /
    • 2005
  • In this paper, finite impulse response (FIR) smoothers are proposed for discrete-time systems. The proposed FIR smoother is designed under the constraints of linearity, unbiasedness, FIR structure, and independence of the initial state information. It is also obtained by directly minimizing the performance criterion with unbiased constraints. The approach to the MVF smoother proposed in this paper is logical and systematic, while existing results have heuristic assumption, such as infinite covariance of the initial state. Additionally, the proposed MVF smoother is based on the general system model that may have the singular system matrix and has both system and measurement noises. Thorough simulation studies, it is shown that the proposed MVF smoother is more robust against modeling uncertainties numerical errors than fixed-lag Kalman smoother which is infinite impulse response (IIR) type estimator.

  • PDF

State-space formulation for simultaneous identification of both damage and input force from response sensitivity

  • Lu, Z.R.;Huang, M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • v.8 no.2
    • /
    • pp.157-172
    • /
    • 2011
  • A new method for both local damage(s) identification and input excitation force identification of beam structures is presented using the dynamic response sensitivity-based finite element model updating method. The state-space approach is used to calculate both the structural dynamic responses and the responses sensitivities with respect to structural physical parameters such as elemental flexural rigidity and with respect to the force parameters as well. The sensitivities of displacement and acceleration responses with respect to structural physical parameters are calculated in time domain and compared to those by using Newmark method in the forward analysis. In the inverse analysis, both the input excitation force and the local damage are identified from only several acceleration measurements. Local damages and the input excitation force are identified in a gradient-based model updating method based on dynamic response sensitivity. Both computation simulations and the laboratory work illustrate the effectiveness and robustness of the proposed method.

VLSI Implemtntations of Fuzzy Logic

  • Grantner, Janos;Patyra, Marek J.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.781-784
    • /
    • 1993
  • Most linguistic models of processes or plants known are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show two models for synchronous finite state machines (FSM) based on fuzzy logic, namely the Crisp-State-Fuzzy-Output (CSFO FSM) and Fuzzy-State-Fuzzy Output (FSFO FSM). As a result of the introduction of the FSM models, the improved architectures for fuzzy logic controller have been defined. These architectures featuring pipelined intelligent fuzzy controller are discussed in terms of dimensionality of the model. VLSI integrated circuit implementation issues of the fuzzy logic controller are also considered. The presented approach can be utilized for fuzzy controller hardware accelerators intended to work in the real-time environment.

  • PDF