• 제목/요약/키워드: finite series

검색결과 1,021건 처리시간 0.032초

유한요소해석 기반 원전 기계구조물 충격-질량지표 개발 (Development of FEA-based Metal Sphere Signal Map for Nuclear Power Plant Structure)

  • 문성인;강토;한순우
    • 한국압력기기공학회 논문집
    • /
    • 제14권1호
    • /
    • pp.38-47
    • /
    • 2018
  • For safe operation of nuclear power plants, a loose-part monitoring system (LPMS) is used to detect and locate loose-parts within the reactor coolant system, and to estimate their mass and damage potential. There are several methods to estimate mass, such as the center frequency method based on the Hertz's impact theory, a frequency ratio method and so on, but it is known that these methods cannot provide accurate information on impact response for identifying the impact source. Thanks to increasing computing power, finite element analysis (FEA) method recently become an available option to calculate reliably impact response behavior. In this paper, a finite element analysis model to simulate the propagation behavior of the bending wave, generated by a metal ball impact, is validated by performing a series of impact tests and the corresponding finite element analyses for flat plate and shell structures. Also, a FEA-based metal sphere signal map is developed, and then blind tests are performed to verify the map. This study provides an accurate simulation method for predicting the metal impact behavior and for building a metal sphere signal map, which can be used to estimate the mass of loose-parts on site in nuclear power plants.

FINITE-DIFFERENCE BISECTION ALGORITHMS FOR FREE BOUNDARIES OF AMERICAN OPTIONS

  • Kang, Sunbu;Kim, Taekkeun;Kwon, Yonghoon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권1호
    • /
    • pp.1-21
    • /
    • 2015
  • This paper presents two algorithms based on the Jamshidian equation which is from the Black-Scholes partial differential equation. The first algorithm is for American call options and the second one is for American put options. They compute numerically free boundary and then option price, iteratively, because the free boundary and the option price are coupled implicitly. By the upwind finite-difference scheme, we discretize the Jamshidian equation with respect to asset variable s and set up a linear system whose solution is an approximation to the option value. Using the property that the coefficient matrix of this linear system is an M-matrix, we prove several theorems in order to formulate a bisection method, which generates a sequence of intervals converging to the fixed interval containing the free boundary value with error bound h. These algorithms have the accuracy of O(k + h), where k and h are step sizes of variables t and s, respectively. We prove that they are unconditionally stable. We applied our algorithms for a series of numerical experiments and compared them with other algorithms. Our algorithms are efficient and applicable to options with such constraints as r > d, $r{\leq}d$, long-time or short-time maturity T.

Investigation into the behaviour of deep beam with web openings by finite element

  • Doh, Jeung-Hwan;Yoo, Tae-Min;Miller, Dane;Guan, Hong;Fragomeni, Sam
    • Computers and Concrete
    • /
    • 제10권6호
    • /
    • pp.609-630
    • /
    • 2012
  • Currently, the design of reinforced concrete deep beams with web openings is carried out using empirical or semi-empirical methods and hence their scope of application is limited. In particular, high strength concrete deep beams with various web opening configurations have been given little treatment. In view of this, a nonlinear layered finite element method (LFEM) for cracking and failure analysis of reinforced concrete structures is used to conduct a parametric study to investigate reinforced concrete deep beams various web opening behaviours. This paper initially presents comparisons of LFEM output with published test results to numerical techniques. The paper then focuses on a parametric study on the shear strengths of deep beams with varying web opening configurations such as opening sizes and locations. The results confirm that the current design methods are inadequate in predicting the maximum shear strength when web openings are present. A series of parametric study offers insight into the maximum shear strength of the deep beams being critically influenced by the size and location of web openings.

Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.301-321
    • /
    • 2016
  • The objective of this paper is to investigate buckling behavior of composite laminated cylinders by using semi-analytical finite strip method. The shell is subjected to deformation-dependent loads which remain normal to the shell middle surface throughout the deformation process. The load stiffness matrix, which is responsible for variation of load direction, is also throughout the deformation process. The shell is divided into several closed strips with alignment of their nodal lines in the circumferential direction. The governing equations are derived based on the first-order shear deformation theory with Sanders-type of kinematic nonlinearity. Displacements and rotations of the shell middle surface are approximated by combining polynomial functions in the meridional direction and truncated Fourier series along with an appropriate number of harmonic terms in the circumferential direction. The load stiffness matrix, which is responsible for variation of load direction, is also derived for each strip and after assembling, global load stiffness matrix of the shell is formed. The numerical illustrations concern the pressure stiffness effect on buckling pressure under various conditions. The results indicate that considering pressure stiffness causes buckling pressure reduction which in turn depends on various parameters such as geometry and lay-ups of the shell.

General Purpose Cross-section Analysis Program for Composite Rotor Blades

  • Park, Il-Ju;Jung, Sung-Nam;Kim, Do-Hyung;Yun, Chul-Yong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권2호
    • /
    • pp.77-85
    • /
    • 2009
  • A two-dimensional cross-section analysis program based on the finite element method has been developed for composite blades with arbitrary cross-section profiles and material distributions. The modulus weighted approach is used to take into account the non-homogeneous material characteristics of advanced blades. The CLPT (Classical Lamination Plate Theory) is applied to obtain the effective moduli of the composite laminate. The location of shear center for any given cross-sections are determined according to the Trefftz' definition while the torsion constants are obtained using the St. Venant torsion theory. A series of benchmark examples for beams with various cross-sections are illustrated to show the accuracy of the developed cross-section analysis program. The cross section cases include thin-walled C-channel, I-beam, single-cell box, NACA0012 airfoil, and KARI small-scale blades. Overall, a reasonable correlation is obtained in comparison with experiments or finite element analysis results.

배수조건에 따른 압밀 거동의 수치적 분석 (Numerical analysis of Consolidation Behavior under Various Drainage Conditions)

  • 오상호;조완제;윤찬영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1194-1199
    • /
    • 2010
  • Systematic finite element analyses on consolidation were performed with various drainage conditions. Numerical analyses were performed using SAGE CRISP2D, a commercial numerical analysis program for the conventional geotechnical engineering practice. For the input properties of the numerical analyses, incremental loading oedometer tests were performed on reconstituted kaolinite samples. Numerical analyses were performed with various drainage conditions such as vertical, radially inward and outward drainage conditions. For the case of radially inward drainage conditions, a series of numerical analyses were performed with varying the diameter of vertical drains. As a result, the lateral deformation and void ratio variation occurred during consolidation for the radially inward or outward drainage conditions. And the variations of the lateral deformation and void ratio did not fully disappear even after the completion of the consolidation and induced the spatial variations of the soil properties. Keywords : finite element analysis of consolidation, various drainage conditions, lateral deformation, spatial variation of soil properties.

  • PDF

Construction of the Spherical High-Order Filter for Applications to Global Meteorological Data

  • Cheong, Hyeong-Bin;Jeong, Han-Byeol
    • 한국지구과학회지
    • /
    • 제36권5호
    • /
    • pp.476-483
    • /
    • 2015
  • The high-order Laplacian-type filter, which is capable of providing isotropic and sharp cut-off filtering on the spherical domain, is essential in processing geophysical data. In this study, a spherical high-order filter was designed by combining the Fourier method with finite difference-method in the longitude and latitude, respectively. The regular grid system was employed in the filter, which has uniform angular spacing including the poles. The singularity at poles was eliminated by incorporating variable transforms and continuity-matching boundary conditions across poles. The high-order filter was assessed using the Rossby-Haurwitz wave, the observed geopotential, and observed wind field. The performance of the filter was found comparable to the filter based on the Galerkin procedure. The filter, employing the finite difference method, can be designed to give any target order of accuracy, which is an important advantage being unavailable in other methods. The computational complexity is represented with 2n-1 diagonal matrices solver with n being the target order of accuracy. Along with the availability of arbitrary target-order, it is also advantageous that the filter can adopt the reduced grid to increase computational efficiency.

Use of copper shape memory alloys in retrofitting historical monuments

  • El-Borgi, S.;Neifar, M.;Jabeur, M. Ben;Cherif, D.;Smaoui, H.
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.247-259
    • /
    • 2008
  • The potential use of Cu-based shape memory alloys (SMA) in retrofitting historical monuments is investigated in this paper. This study is part of the ongoing work conducted in Tunisia within the framework of the FP6 European Union project (WIND-CHIME) on the use of appropriate modern seismic protective systems in the conservation of Mediterranean historical buildings in earthquake-prone areas. The present investigation consists of a finite element simulation, as a preliminary to an experimental study where a cantilever masonry wall, representing a part of a historical monument, is subjected to monotonic and quasi-static cyclic loadings around a horizontal axis at the base level. The wall was retrofitted with an array of copper SMA wires with different cross-sectional areas. A new model is proposed for heat-treated copper SMAs and is validated based on published experimental results. A series of nonlinear finite element analyses are then performed on the wall for the purpose of assessing the SMA device retrofitting capabilities. Simulation results show an improvement of the wall response for the case of monotonic and quasi-static cyclic loadings.

The effect of finite element modeling assumptions on collapse capacity of an RC frame building

  • Ghaemian, Saeed;Muderrisoglu, Ziya;Yazgan, Ufuk
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.555-565
    • /
    • 2020
  • The main objective of seismic codes is to prevent structural collapse and ensure life safety. Collapse probability of a structure is usually assessed by making a series of analytical model assumptions. This paper investigates the effect of finite element modeling (FEM) assumptions on the estimated collapse capacity of a reinforced concrete (RC) frame building and points out the modeling limitations. Widely used element formulations and hysteresis models are considered in the analysis. A full-scale, three-story RC frame building was utilized as the experimental model. Alternative finite element models are established by adopting a range of different modeling strategies. Using each model, the collapse capacity of the structure is evaluated via Incremental Dynamic Analysis (IDA). Results indicate that the analytically estimated collapse capacities are significantly sensitive to the utilized modeling approaches. Furthermore, results also show that models that represent stiffness degradation lead to a better correlation between the actual and analytical responses. Results of this study are expected to be useful for in developing proper models for assessing the collapse probability of RC frame structures.

Comparison of hot spot stress evaluation methods for welded structures

  • Seo, Jung-Kwan;Kim, Myung-Hyun;Shin, Sang-Beom;Han, Myung-Soo;Park, June-Soo;Mahendr, Mahen;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제2권4호
    • /
    • pp.200-210
    • /
    • 2010
  • In this paper, different evaluation methods of Hot Spot Stresses (HSS) have been applied to four different welded structure details in order to compare them and to illustrate their differences. The HSSs at failure-critical locations were calculated by means of a series of finite element analyses. There was good overall agreement between calculated and experimentally determined HSS on the critical locations. While different methods and procedures exist for the computation of the structural hot-spot stress at welded joints, the recommendations within the International Institute of Welding (IIW) guideline concerning the 'Hot Spot Stress' approach were found to give good reference stress approximations for fatigue-loaded welded joints. This paper recommends and suggests an appropriate finite element modeling and hot spot stress evaluation technique based on round-robin stress analyses and experimental results of several welded structure details.