• Title/Summary/Keyword: finite series

Search Result 1,023, Processing Time 0.03 seconds

An Analytical Solution of Progressive Wave-Induced Residual Pore-Water Pressure in Seabed (진행파동장하 해저지반내 잔류간극수압의 해석해)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung;Kim, Kyu-Han;Ryu, Heung Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.159-167
    • /
    • 2015
  • In this paper, the errors found in the existed analytical solutions described the mechanism of residual pore-water pressure accumulation were examined and a new analytical was proposed. The new analytical solution was derived by using a Fourier series expansion and separation of variables was verified by comparison with the existed both analytical and numerical solutions and experimental result. The new analytical solution is very simple that there is no need for numerical integration for deep soil thickness. In addition, the solutions of the residual pore-water pressure for finite, deep, and shallow soil thickness reveled that it is possible to approach from finite to shallow soil thickness, but not possible to deep soil thickness because there was discontinues zone between finite and deep soil thickness.

Finite Element Approach to Investigate the Influence of the Jaw Bone Dimension on the Stress Around the Root Analogue Dental Implant (악골폭경이 치근형 임플란트 인접골에서의 응력에 미치는 영향에 대한 유한요소해석적 연구)

  • Jang, Ji-Man;Lee, Kyu-bok;Lee, Cheong-Hee;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.37-53
    • /
    • 2006
  • Purpose: The purpose of this study was to investigate the influences of the jaw dimension on the bone stress. Materials and Methods: Root analogue implant of Frialit-2 Synchro model in the jaw bone of various thickness from 8mm to 13mm were modelled axisymmetrically for a series of finite element analyses. As load conditions, non-axisymmetric lateral load of 20N and an oblique load of 50N, as well as an axisymmetric vertical load of 50N were taken into consideration. Results: The cervical area of implant under the axisymmetric load and the base cortical bone under the non axisymmetric load condition were the areas of main concern where the higher level of stress were likely to be obtained. Conclusion: The results indicated that at the two concerned areas drastically different stress distribution could take place as a function of the load conditions. Under the vertical load, the lower level of stress was observed for the narrow jaw bone at the cervical cortical bone whereas stress at the base cortical bone remained virtually unchanged. Under the non axisymmetric load condition, however, the stress at the base cortical bone increased very rapidly as the jaw bone width increased without inducing any significant change in the stress level at the cervical area.

Analysis of Rectangular Plates under Distributed Loads of Various Intensity with Interior Supports at Arbitrary Positions (분포하중(分布荷重)을 받는 구형판(矩形板)의 탄성해석(彈性解析))

  • Suk-Yoon,Chang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 1976
  • Some methods of analysis of rectangular plates under distributed load of various intensity with interior supports are presented herein. Analysis of many structures such as bottom, side shell, and deck plate of ship hull and flat slab, with or without internal supports, Floor systems of bridges, included crthotropic bridges is a problem of plate with elastic supports or continuous edges. When the four edges of rectangular plate is simply supported, the double Fourier series solution developed by Navier can represent an exact result of this problem. If two opposite edges are simply supported, Levy's method is available to give an "exact" solution. When the loading condition and supporting condition of a plate does not fall into these cases, no simple analytic method seems to be feasible. Analysis of a simply supported rectangular plate under irregularly distributed loads of various intensity with internal supports is carried out by applying Navier solution well as the "Principle of Superposition." Finite difference technique is used to solve plates under irregularly distributed loads of various intensity with internal supports and with various boundary conditions. When finite difference technique is applied to the Lagrange's plate bending equation, any of fourth order derivative term in this equation produces at least five pivotal points leading to some troubles when the resulting linear algebraic equations are to be solved. This problem was solved by reducing the order of the derivatives to two: the fourth order partial differential equation with one dependent variable, namely deflection, is changed to an equivalent pair of second order partial differential equations with two dependent variables. Finite difference technique is then applied to transform these equations to a set of simultaneous linear algebraic equations. Principle of Superposition is then applied to handle the problems caused by concentrated loads and interior supports. This method can be used for the cases of plates under irregularly distributed loads of various intensity with arbitrary conditions such as elastic supports, or continuous edges with or without interior supports, and this method can also be solve the influence values of deflection, moment and etc. at arbitrary position of plates under the live load.

  • PDF

Performance of steel beams at elevated temperatures under the effect of axial restraints

  • Liu, T.C.H.;Davies, J.M.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.427-440
    • /
    • 2001
  • The growing use of unprotected or partially protected steelwork in buildings has caused a lively debate regarding the safety of this form of construction. A good deal of recent research has indicated that steel members have a substantial inherent ability to resist fire so that additional fire protection can be either reduced or eliminated completely. A performance based philosophy also extends the study into the effect of structural continuity and the performance of the whole structural totality. As part of the structural system, thermal expansion during the heating phase or contraction during the cooling phase in most beams is likely to be restrained by adjacent parts of the whole system or sub-frame assembly due to compartmentation. This has not been properly addressed before. This paper describes an experimental programme in which unprotected steel beams were tested under load while it is restrained between two columns and additional horizontal restraints with particular concern on the effect of catenary action in the beams when subjected to large deflection at very high temperature. This paper also presents a three-dimensional mathematical modelling, based on the finite element method, of the series of fire tests on the part-frame. The complete analysis starts with an evaluation of temperature distribution in the structure at various time levels. It is followed by a detail 3-D finite element analysis on its structural response as a result of the changing temperature distribution. The principal part of the analysis makes use of an existing finite element package FEAST. The effect of columns being fire-protected and the beam being axially restrained has been modelled adequately in terms of their thermal and structural responses. The consequence of the beam being restrained is that the axial force in the restrained beam starts as a compression, which increases gradually up to a point when the material has deteriorated to such a level that the beam deflects excessively. The axial compression force drops rapidly and changes into a tension force leading to a catenary action, which slows down the beam deflection from running away. Design engineers will be benefited with the consideration of the catenary action.

Study on Design of Truncated Mooring Line with Static Similarity in Model Test Basins (모형수조에서 정적 상사성을 지닌 절단계류선 모델링에 관한 연구)

  • Kim, Yun-Ho;Kim, Byoung-Wan;Cho, Seok-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.257-265
    • /
    • 2017
  • In this study, a series of numerical simulations was conducted in order to design a truncated mooring line with a static similarity to the prototype. A finite element method based on minimizing the potential energy was utilized to describe the dynamics of mooring lines. The prototype mooring lines considered were installed at a water depth of 1,000 m, whereas the KRISO ocean engineering basin (OEB) in Daejeon has a water depth of 3.2 m, which represents 192 m using a scaling of 1:60. First, an investigation for the design of the truncated mooring line was carried out to match the static characteristics of the KRISO Daejeon OEB environment. Then, the same procedure was performed with the KRISO new deepwater ocean engineering basin (DOEB) that is under construction in Busan. This new facility has a water depth of 15 m, which reflects a real scale depth of 900 m considering the 1:60 scaling factor. A finite element method was used to model the mooring line dynamics. It was found that the targeted truncated mooring line could not be designed under the circumstances of the KRISO OEB with any material properties, whereas several mooring lines were easily matched to the prototype under the circumstances of the KRISO DOEB.

Numerical modeling of two parallel tunnels interaction using three-dimensional Finite Elements Method

  • Nawel, Bousbia;Salah, Messast
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.775-791
    • /
    • 2015
  • Due to the extension of communication ways (metro, highways, railways), hence, to improve traffic flow imposes often the difficult crossing that generally drive to the construction of underground works (tunnel, water conveyance tunnel...) plays a major role in the redevelopment of urban areas. This study is focused on the assessment of the interaction response of parallel tunnels, so this study uses the results from the simulation of two tunnels to illustrate a few observations that may aid in practical designs. In this article, simultaneous drilling of highway's twin tunnels is simulated by means of Finite Element Method (FEM) implemented in Plaxis program. So the treated subject appears in a setting of geotechnical where one can be to construct several tunnels sometimes in a ground of weak mechanical characteristics. The objective of this study is to simulate numerically the interaction effects caused by construction of two parallels tunnels. This is an important factor in the study of the total answer of the problem interaction between parallels underground works. The importance of the effects transmitted is function of several parameters as the type of the works, and the mechanical characteristics (tunnel size, depth, and the relative position between two tunnels, lining thickness...). This article describes numerical analyses of two parallels tunnels interaction. This study will be applied to a real case of a section tunnel T4 of the highway East-West (Algeria); the study presented below comprises a series of numerical simulations of two tunnels using the computer program Plaxis which is used in the analyses is based on Finite Element Method.

Small- and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.315-328
    • /
    • 2019
  • This paper presents an investigation on bearing capacity, load-settlement behavior and safety factor of rock-soil slopes reinforced using geogrid-box method (GBM). To this end, small-scale laboratory studies were carried out to study the load-settlement response of a circular footing resting on unreinforced and reinforced rock-soil slopes. Several parameters including unit weight of rock-soil materials (loose- and dense-packing modes), slope height, location of footing relative to the slope crest, and geogrid tensile strength were studied. A series of finite element analysis were conducted using ABAQUS software to predict the bearing capacity behavior of slopes. Limit equilibrium and finite element analysis were also performed using commercially available software SLIDE and ABAQUS, respectively to calculate the safety factor. It was found that stabilization of rock-soil slopes using GBM significantly improves the bearing capacity and settlement behavior of slopes. It was established that, the displacement contours in the dense-packing mode distribute in a broader and deeper area as compared with the loose-packing mode, which results in higher ultimate bearing load. Moreover, it was found that in the loose-packing mode an increase in the vertical pressure load is accompanied with an increase in the soil settlement, while in the dense-packing mode the load-settlement curves show a pronounced peak. Comparison of bearing capacity ratios for the dense- and loose-packing modes demonstrated that the maximum benefit of GBM is achieved for rock-soil slopes in loose-packing mode. It was also found that by increasing the slope height, both the initial stiffness and the bearing load decreases. The results indicated a significant increase in the ultimate bearing load as the distance of the footing to the slope crest increases. For all the cases, a good agreement between the laboratory and numerical results was observed.

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part I : Modeling (개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part I : 모델링)

  • Choi, Soon-wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.484-495
    • /
    • 2020
  • To numerically simulate the advance of EPB TBM, various type of numerical analysis methods have been adopted including discrete element method (DEM), finite element method (FEM), and finite difference method (FDM). In this paper, an EPB TBM driving model was proposed by using coupled DEM-FDM. In the numerical model, DEM was applied in the TBM excavation area, and contact properties of particles were calibrated by a series of triaxial tests. Since the ground around the excavation area was coupled with FDM, the horizontal stress considering the coefficient of earth pressure at rest could be applied. Also, the number of required particles was reduced and the efficiency of the analysis was increased. The proposed model can control the advance rate and rotational speed of the cutter head and screw conveyor, and derive the torque, thrust force, chamber pressure, and discharging during TBM tunnelling.

Analysis Method for Non-Linear Finite Strain Consolidation for Soft Dredged Soil Deposit - Part II: Analysis Method and Craney Island Case Study (초연약 준설 매립지반의 비선형 유한변형 압밀해석기법 - Part II: 해석기법과 Craney Island 사례분석)

  • Choi, Hang-Seok;Kwak, Tae-Hoon;Lee, Chul-Ho;Lee, Dong-Seop;Stark, T.D.
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.5-15
    • /
    • 2011
  • This paper presents two analysis methods for characterizing the non-linear finite strain consolidation behavior of highly deformable dredged soil deposits along with the fundamental parameters obtained in the companion paper; that is, the zero effective stress void ratio, the non-linear relationships of void ratio-effective stress and void ratio-hydraulic conductivity. The simplified Morris's analytical solution (2002) and the widely recognized numerical program, PSDDF (primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill) for both single and double drainage conditions are adopted in this paper to verify a series of laboratory experiments for self-weight consolidation of the Incheon clay and Kaolinite. The comparisons show that the analysis methods proposed herein can properly simulate the long-term non-linear finite strain consolidation behavior for dredged soils in the field. In addition, a case study for the artificial Craney Island has been conducted to illustrate the importance of obtaining appropriate non-linear finite strain consolidation parameters and the applicability of PSDDF in promoting dredged soil disposal.

THE ZEROS OF CERTAIN FAMILY OF SELF-RECIPROCAL POLYNOMIALS

  • Kim, Seon-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.461-473
    • /
    • 2007
  • For integral self-reciprocal polynomials P(z) and Q(z) with all zeros lying on the unit circle, does there exist integral self-reciprocal polynomial $G_r(z)$ depending on r such that for any r, $0{\leq}r{\leq}1$, all zeros of $G_r(z)$ lie on the unit circle and $G_0(z)$ = P(z), $G_1(z)$ = Q(z)? We study this question by providing examples. An example answers some interesting questions. Another example relates to the study of convex combination of two polynomials. From this example, we deduce the study of the sum of certain two products of finite geometric series.