• Title/Summary/Keyword: finite series

Search Result 1,021, Processing Time 0.027 seconds

Heat Dissipation Analysis of 12kV Diode by the Packaging Structure (12kV급 다이오드의 패키징 구조에 따른 방열 특성 연구)

  • Kim, Nam-Kyun;Kim, Sang-Cheol;Bahng, Wook;Song, Geun-Ho;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1092-1095
    • /
    • 2001
  • Steady state thermal analysis has been done by a finite element method in a diode of 12kV blocking voltage. The diode was fabricated by soldering ten pieces of 1200V diodes in series, capping a dummy wafer at the far end of diode series, and finally wire bonded for building anode and cathode terminal. In order to achieve high voltage and reliability, the edge of each diode was beveled and passivated by resin with a thickness of 25${\mu}$m. It was assumed that the generated heat which is mainly by the on-state voltage drop, 9V for 12kV diode, is dissipated by way of the conduction through diodes layers to bonding wire and of the convection at the surface of passivating resin. It was predicted by the thermal analysis that the temperature rise of a pn junction of the 12kV diode can reach at the range of 16∼34$^{\circ}C$ under the given boundary conditions. The thickness and thermal conductivity(0.3∼3W/m-K) of the passivating resin did little effect to lower thermal resistance of the diode. As the length of the bonding wire increased, which means the distance of heat conduction path became longer, the thermal resistance increased considerably. The thermal analysis results imply that the generated heat of the diode is dissipated mainly by the conduction through the route of diode-dummy wafer-bonding wire, which suggests to minimize the length of the wire for the lowest thermal resistance.

  • PDF

Study of an innovative two-stage control system: Chevron knee bracing & shear panel in series connection

  • Vosooq, Amir Koorosh;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.881-898
    • /
    • 2013
  • This paper describes analytical investigation into a new dual function system including a couple of shear links which are connected in series using chevron bracing capable to correlate its performance with magnitude of earthquakes. In this proposed system, called Chevron Knee-Vertical Link Beam braced system (CK-VLB), the inherent hysteretic damping of vertical link beam placed above chevron bracing is exclusively utilized to dissipate the energy of moderate earthquakes through web plastic shear distortion while the rest of the structural elements are in elastic range. Under strong earthquakes, plastic deformation of VLB will be halted via restraining it by Stopper Device (SD) and further imposed displacement subsequently causes yielding of the knee elements located at the bottom of chevron bracing to significantly increase the energy dissipation capacity level. In this paper first by studying the knee yielding mode, a suitable shape and angle for diagonal-knee bracing is proposed. Then finite elements models are developed. Monotonic and cyclic analyses have been conducted to compare dissipation capacities on three individual models of passive systems (CK-VLB, knee braced system and SPS system) by General-purpose finite element program ABAQUS in which a bilinear kinematic hardening model is incorporated to trace the material nonlinearity. Also quasi-static cyclic loading based on the guidelines presented in ATC-24 has been imposed to different models of CK-VLB with changing of vertical link beam section in order to find prime effectiveness on structural frames. Results show that CK-VLB system exhibits stable behavior and is capable of dissipating a significant amount of energy in two separate levels of lateral forces due to different probable earthquakes.

Effects of the structural strength of fire protection insulation systems in offshore installations

  • Park, Dae Kyeom;Kim, Jeong Hwan;Park, Jun Seok;Ha, Yeon Chul;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.493-510
    • /
    • 2021
  • Mineral wool is an insulation material commonly used in passive fire protection (PFP) systems on offshore installations. Insulation materials have only been considered functional materials for thermal analysis in the conventional offshore PFP system design method. Hence, the structural performance of insulation has yet to be considered in the design of PFP systems. However, the structural elements of offshore PFP systems are often designed with excessive dimensions to satisfy structural requirements under external loads such as wind, fire and explosive pressure. To verify the structural contribution of insulation material, it was considered a structural material in this study. A series of material tensile tests was undertaken with two types of mineral wool at room temperature and at elevated temperatures for fire conditions. The mechanical properties were then verified with modified methods, and a database was constructed for application in a series of nonlinear structural and thermal finite-element analyses of an offshore bulkhead-type PFP system. Numerical analyses were performed with a conventional model without insulation and with a new suggested model with insulation. These analyses showed the structural contribution of the insulation in the structural behaviour of the PFP panel. The results suggest the need to consider the structural strength of the insulation material in PFP systems during the structural design step for offshore installations.

Wavelet Series Analysis of Axial Members with Stress Singularities (응력특이를 갖는 축방향 부재의 웨이블렛 급수해석)

  • Woo, Kwang-Sung;Jang, Young-Min;Lee, Dong-Woo;Lee, Sang-Yun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The Fourier series uses a vibrating wave that possesses an amplitude that is like the one of the sine curve. Therefore, the functions used in the Fourier series do not change due to the value of the frequency and that set a limit to express irregular signals with rapid oscillations or with discontinuities in localized regions. However, the wavelet series analysis(WSA) method supplements these limits of the Fourier series by a linear combination of a suitable number of wavelets. By using the wavelet that is focused on time, it is able to give changes to the range in the cycle. Also, this enables to express a signal more efficiently that has singular configuration and that is flowing. The main objective of this study is to propose a scheme called wavelet series analysis for the application of wavelet theory to one-dimensional problems represented by the second-order elliptic equation and to evaluate theperformance of proposed scheme comparing with the finite element analysis. After a through evaluation of different types of wavelets, the HAT wavelet system is chosen as a wavelet function as well as a scaling function. It can be stated that the WSA method is as efficient as the FEA method in the case of axial bars with distributed loads, but the WSA method is more accurate than the FEA method at the singular points and its computation time is less.

Spinal Stability Evaluation According to the Change in the Spinal Fixation Segment Based on Finite Element Analysis (유한요소해석 기반 척추 고정분절 변화에 따른 척추 안정성 평가)

  • Kim, Cheol-Jeong;Son, Seung Min;Heo, Jin-Young;Lee, Chi-Seung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.145-152
    • /
    • 2020
  • In this study, we evaluated spinal stability based on the change in the thoracolumbar fixation segment using finite element analysis (FEA). To accomplish this, a finite element (FE) model of a normal thoracolumbar spine (T10-L4), including intervertebral discs (IVD), ligaments, and facet joints, was constructed, and the material properties reported in previous studies were implemented. However, L1 was assumed as the lesion site, and three types of posterior fixation, namely, L1-L2, T12-L2, and T12-L1-L2, were implemented in the thoracolumbar FE model. In addition, the loading conditions for flexion, extension, lateral bending, and axial rotation were adopted. Through the series FEA, the deformation, equivalent stress, range of motion, and moment on the pedicle screws, vertebrae, and IVD were calculated, and the spinal stability was evaluated based on the FEA results.

Evaluation of Vertical Bearing Capacity of Bucket Foundations in Layered Soil by Using Finite Element Analysis (유한요소해석을 통한 다층지반에서의 버킷기초 수직지지력 산정)

  • Park, Jeong-Seon;Park, Duhee;Yoon, Se-Woong;Saeed-ullah, Jan Mandokhai
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.35-45
    • /
    • 2016
  • Estimation of vertical bearing capacity is critical in the design of bucket foundation used to support offshore structure. Empirical formula and closed form solutions for bucket foundations in uniform sand or clay profiles have been extensively studied. However, the vertical bearing capacity of bucket foundations in alternating layers of sand overlying clay is not well defined. We performed a series of two-dimensional axisymmetric finite element analyses on bucket foundations in sand overlying clay soil, using elasto-plastic soil model. The load transfer mechanism is investigated for various conditions. Performing the parametric study for the friction angles, undrained shear strengths, thickness of sand layer, and aspect ratios of foundation, we present the predictive charts for determining the vertical bearing capacities of bucket foundations in sand overlying clay layer. In addition, after comparing with the finite element analysis results, it is found that linear interpolation between the design charts give acceptable values in these ranges of parameters.

Distribution of Irregular Wave Height in Finite Water Depth (유한수심에서의 불규칙파의 파고 분포)

  • 안경모;마이클오찌
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.88-93
    • /
    • 1994
  • This study is concerned with an analytic derivation of the probability density function applicable for wave heights in finite water depth using two different methods. As the first method of the study, a probability density function is developed by applying a series of polynomials which is orthogonal with respect to Rayleigh probability density function. The newly derived probability density function is compared with the histogram constructed from wave data obtained in finite water depth which indicate strong non-Gaussian characteristics. Although the probability density represents the histogram very well. it has negative density at large values. Although the magnitude of the negative density is small. it negates the use of the distribution function fer estimating extreme values. As the second method of the study, a probability density function of wave height is developed by applying the maximum entropy method. The probability density function thusly derived agrees very well with the wave height distribution in shallow water, and appears to be useful in estimating extreme values and statistical properties of wave heights in finite water depth. However, a functional relationship between the probability distribution and the non-Gaussian characteristics of the data cannot be obtained by applying the maximum entropy method.

  • PDF

Development of Compressive Ultimate Strength Formulations for Ship Plating Stiffener with Cutout (선체 유공보강판의 압축최종강도에 관한 설계식 개발)

  • Ko Jae-Yong;Park Joo-Shin;Oh Dong-Kee
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.121-125
    • /
    • 2004
  • Recently, High Tensile Steel is adapt to thin plate on the steel structure and marine structure is used widely, It is possible for buckling happens great. Specially, Initial deflection of ship structure happens in place absence necessarily by heat processing of welding or cutting etc. This Initial Deflection is exerted negative impact when thin plate absence complicated nonlinear behaviour accompanied secondary budding. As a result, must idealize initial deflection that occurrence is possible to endow stability and accuracy in the hull structure or marine structure and reflect in early structure design considering secondary buckling. Longi direction of compressive load interacts and analyzed finite element series analysis that apply various kinds initial deflection shape measured actually on occasion that is arranged simply supported condition in this research. Applied ANSYS (elasto-plasticity large deformation finite element method) to be mediocrity finite element program for analysis method and analysis control used in Newton-Raphson method & Arc-length method.

  • PDF

A Study on the Compressive Ultimate Strength of Ship Plating with Complicated Shape of the Initial Deflection (복잡한 형상의 초기처짐을 가진 선체판의 압축최종강도에 관한 연구)

  • 고재용;박주신;이계희;박성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.83-88
    • /
    • 2004
  • Recently, High Tensile Steel is adapt to thin plate on the steel structure and marine structure is used widely. It is possible for buckling happens great. Specially, Initial deflection of ship structure happens in place absence necessarily by heat processing of welding or cutting etc. This Initial Deflection is exerted negative impact when thin plate absence complicated nonlinear behaviour accompanied secondary buckling. As a result, must idealize initial deflection that occurrence is possible to endow stability and accuracy in the hull structure or marine structure and reflect in early structure design considering secondary buckling. Longi direction of compressive load interacts and analyzed finite element series analysis that apply various kinds initial deflection shape measured actually on occasion that is arranged simply supported condition in this research. Applied ANSYS (elasto-plasticity large deformation finite element method) to be mediocrity finite element program for analysis method and analysis control used in Newton-Raphson method & Arc-length method.

  • PDF

DEVELOPMENT OF FINITE ELEMENT HUMAN NECK MODEL FOR VEHICLE SAFETY SIMULATION

  • Lee, I.H.;Choi, H.Y.;Lee, J.H.;Han, D.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.33-46
    • /
    • 2004
  • A finite element model development of a 50th percentile male cervical spine is presented in this paper. The model consists of rigid, geometrically accurate vertebrae held together with deformable intervertibral disks, facet joints, and ligaments modeled as a series of nonlinear springs. These deformable structures were rigorously tuned, through failure, to mimic existing experimental data; first as functional unit characterizations at three cervical levels and then as a fully assembled c-spine using the experimental data from Duke University and other data in the NHTSA database. After obtaining satisfactory validation of the performance of the assembled ligamentous cervical spine against available experimental data, 22 cervical muscle pairs, representing the majority of the neck's musculature, were added to the model. Hill's muscle model was utilized to generate muscle forces within the assembled cervical model. The muscle activation level was assumed to be the same for all modeled muscles and the degree of activation was set to correctly predict available human volunteer experimental data from NBDL. The validated model is intended for use as a post processor of dummy measurement within the simulated injury monitor (SIMon) concept being developed by NHTSA where measured kinematics and kinetic data obtained from a dummy during a crash test will serve as the boundary conditions to "drive" the finite element model of the neck. The post-processor will then interrogate the model to determine whether any ligament have exceeded its known failure limit. The model will allow a direct assessment of potential injury, its degree and location thus eliminating the need for global correlates such as Nij.