• Title/Summary/Keyword: finite member element

Search Result 442, Processing Time 0.029 seconds

Analysis and Test for Turn-buckle of Capacity for Measuring Tensile Force (용량별 인장력 측정용 턴버클의 해석 및 실험)

  • Shin, Kyung-Jae;Lee, Swoo-Heon;Lee, Hee-Du
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.715-724
    • /
    • 2011
  • A turn buckle inserted between tension members that sustain the structural loads in a suspension structure system is a device that is capable of adjusting the tensile force. The tension member is an important element of a tension structure, but no simple and economical method of measuring a tensile force applied to members has been proposed yet. Thus, a turn buckle for measuring the tensile force in a tension member was developed in this study. The turn buckles of the measurement limit loads of 100kN, 200kN, and 300kN were tested through a theoretical analysis and a finite element analysis. There was no significant difference in the results of the theoretical analysis, FEA, and the test. In addition, the ultimate strength of the turn buckle using FEA showed that a new turn buckle is sufficiently safe to use even when there is a five-times overload in the measurement limit load.

Web crippling strength of cold-formed stainless steel lipped channel-sections with web openings subjected to interior-one-flange loading condition

  • Yousefi, Amir M.;Lim, James B.P.;Uzzaman, Asraf;Lian, Ying;Clifton, G. Charles;Young, Ben
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.629-659
    • /
    • 2016
  • In cold-formed stainless steel lipped channel-sections, web openings are becoming increasingly popular. Such openings, however, result in the sections becoming more susceptible to web crippling, especially under concentrated loads applied near the web opening. This paper presents the results of a finite element parametric study into the effect of circular web openings on the web crippling strength of cold-formed stainless steel lipped channel-sections for the interior-one-flange (IOF) loading condition. This involves a bearing load applied to the top flange of a length of member, away from the end supports. The cases of web openings located centred beneath the bearing load (i.e. beneath the bearing plate delivering the load) and offset to the bearing plate, are considered. Three grades of stainless steel are considered: duplex EN1.4462, austenitic EN1.4404 and ferretic EN1.4003. In total, 2218 finite element models were analyzed. From the results of the parametric study, strength reduction factors for load bearing capacity are determined, where these reduction factors are applied to the bearing capacity calculated for a web without openings, to take account the influence of the web openings. The strength reduction factors are first compared to equations recently proposed for cold-formed carbon steel lipped channel-sections. It is shown that for the case of the duplex grade, the strength reduction factor equations for cold-formed carbon steel are conservative but only by 2%. However, for the cases of the austentic and ferritic grades, the cold-formed carbon steel equations are around 9% conservative. New strength reduction factor equations are proposed for all three stainless steel grades.

Behavior of Soil-reinforced Retaining Walls in Tiered Arrangement (계단식 보강토 옹벽의 거동 특성)

  • Yoo, Choong-Sik;Kim, Joo-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.61-72
    • /
    • 2002
  • This paper presents the results of investigation on the behavior of soil-reinforced segmental retaining walls in tiered arrangement using the finite element method of analysis. 2D finite element analyses were performed on tiered walls with two levels of offset distance. Cases with equivalent surcharge as suggested by the NCMA design guideline were additionally analyzed in an attempt to confirm the appropriateness of the equivalent surcharge model adopted by NCMA. Deformation characteristics of a tiered wall with small offset distance suggest a compound mode of failure and support current design approaches requiring a global slope stability analysis for design. Also revealed is that the interaction between the upper and lower walls significantly affects not only the performance of the lower wall but also the upper wall, suggesting that the upper walls should also be designed with due consideration of the interaction.

Lateral-Torsional Post-Buckling Analyses of Thin-Walled Space Frames with Non-symmetric Sections (비대칭단면을 갖는 박벽 공간뼈대구조의 횡-비틂 후좌굴 유한요소해석)

  • Park, Hyo Gi;Kim, Sung Bo;Kim, Moon Young;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.153-165
    • /
    • 1999
  • In order to trace the lateral-torsional post-bucking behaviors of thin-walled space frames with non-symmetric cross sections, a geometrically non-linear finite element formulation is presented by applying incremental equilibrium equations based on the updated Lagrangian formulation and introducing Vlasov's assumption. The improved displacement field for non-symmetric thin-walled cross sections is introduced based on inclusion of second order terms of finite rotations, and the potential energy corresponding to the semitangential rotations and moments is consistently derived. For finite element analysis, tangent stiffness matrices of thin-walled space frame element are derived by using the Hermition polynomials as shape functions. A co-rotational formulation in order to evaluate the unbalanced loads is presented by separating the rigid body rotations and pure deformations from incremental displacements and evaluating the updated direction cosines and incremental member forces.

  • PDF

Finite Element Analysis of H-Shaped Compressive Member Exposed High Temperatures (고온에 노출된 H-형강 압축재의 유한요소해석)

  • Lee, Swoo-Heon;Lee, Hee-Du;Choi, Jun-Ho;Shin, Kyung-Jae
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.54-59
    • /
    • 2016
  • Steel is a structural material that is inherently noncombustible. On the other hand, it has high thermal conductivity and the strength and stiffness of the material are reduced significantly when exposed to fire or high temperatures. Because the yield strength and modulus of elasticity of steel are reduced by 70% at $350^{\circ}C$ and less than 50% at $600^{\circ}C$, the load-carrying capacity of steel structure at high temperature rapidly lose. To be accepted as a fire-resisting construction, the fire test should be performed at the certificate authority. On the other hand, the fire test on a full-scale structure is limited by time, space, and high-cost. The analytical method was verified by a comparison with the fire test of H-section columns under compression and thermal analysis based on a finite element method using the ABAQUS program, and the numerical analysis method reported in this study was suggested as a complement of an actual fire test.

Finite Element Analysis of Gabled Hyperbolic Paraboloid Shells (모임지붕형 쌍곡포물선 쉘구조의 유한요소해석)

  • Kim, Seung-Nam;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.87-98
    • /
    • 2012
  • In this study, mechanical role of edge beams in the gabled hyperbolic paraboloid shells was investigated through the comparisons of Finite element(FE) analysis results between the shells structures with and without edge beams. In addition, the effects of roof slope was studied. FE analysis showed that roof loads was directly transferred to the supports at corners by the arch action in the diagonal direction of the shells, thus, less member forces in the edge and ridge beams but higher stresses near supports were estimated than those from the membrane theory. When the edge beams were removed, stress concentration in the shells near the supports and the deflections along the shell edge were increased. Such phenomenon were intensified as the roof slope decrease. Thus, in gable hyperbolic paraboloid shell, the thickness of the shell near supports needs to be increased and careful investigation should be made in the cases when the roof height is low and/or the edge beams are removed.

Heat Conduction Analysis and Fire Resistance Capacity Evaluation of Reinforced Concrete Beams Strengthened by FRP (FRP로 보강된 철근콘크리트보의 열전도해석 및 내화성능 평가)

  • Lim, Jong-Wook;Park, Jong-Tae;Kim, Jung-Woo;Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • The object of this paper is to find the characteristics of fire proof materials through an analytical method and to suggest a proper approach for fire-proof design of reinforced concrete beam strengthened with fiber reinforced polymer (FRP). Heating tests for fire-proof materials were conducted and the thermal conductivities and specific heats of them were simulated through finite element analyses. In addition, a finite element analysis on the beam specimen strengthened with FRP under high temperature, which was conducted by previous researchers, was performed and the analytical result was compared with test result. And then the compatibility of the analytical approach was evaluated. Finally, the heat resistance characteristic of RC beam strengthened with FRP was analyzed by the proposed analytical method and the strength decrease of the beam due to the high temperature was evaluated. From the comparison with analytical and test result, it was found that the heat transfer from outside to inside through the fire-proof materials can be suitably simulated by using the proposed analytical approach.

A Study on Safety Assessment Platform for wheelchair structural design (휠체어 설계를 위한 구조 안전성 평가 플랫폼 연구)

  • Yongwoo Lee;Jinhee Lee
    • Journal of Platform Technology
    • /
    • v.11 no.6
    • /
    • pp.47-55
    • /
    • 2023
  • With the goal of ensuring the safety of wheelchair users, this study was conducted using finite element analysis, focusing on the development of a platform that can be used to evaluate safety during the design stage. Safety evaluation criteria for wheelchairs used in vehicles are defined in ANSI/RESNA WC19 and ISO 7176-19. Based on these standards, finite element analysis was performed to assess the sectional forces of each component of the wheelchair and sensitivity analysis was conducted based on the specifications. These results were used to derive equivalent composite loads for the wheelchair's main components, determine the necessary sectional specifications for these main components in the wheelchair design phase, and investigate the process of safety assessment verification. The study showed that member forces vary with changes in the cross-sectional values of the wheelchair frame's main components, with the front and rear lower members, as well as the rear upper and lower members, requiring the highest cross-sectional values for safety design. This study offers a proactive method for evaluating safety in the wheelchair design stage, and in future research, we plan to develop a safety evaluation platform based on these results.

  • PDF

Advanced analysis for planar steel frames with semi-rigid connections using plastic-zone method

  • Nguyen, Phu-Cuong;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1121-1144
    • /
    • 2016
  • This paper presents a displacement-based finite element procedure for second-order distributed plasticity analysis of planar steel frames with semi-rigid beam-to-column connections under static loadings. A partially strain-hardening elastic-plastic beam-column element, which directly takes into account geometric nonlinearity, gradual yielding of material, and flexibility of semi-rigid connections, is proposed. The second-order effects and distributed plasticity are considered by dividing the member into several sub-elements and meshing the cross-section into several fibers. A new nonlinear solution procedure based on the combination of the Newton-Raphson equilibrium iterative algorithm and the constant work method for adjusting the incremental load factor is proposed for solving nonlinear equilibrium equations. The nonlinear inelastic behavior predicted by the proposed program compares well with previous studies. Coupling effects of three primary sources of nonlinearity, geometric imperfections, and residual stress are investigated and discussed in this paper.

Shear Transfer across Cracks in Reinforced Concrete Members (RC 부재 균열면에서의 전단력 전달에 관한 고찰)

  • 홍성걸;하태훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.527-532
    • /
    • 2000
  • Cracks in reinforced concrete members are important element in structural analysis and design. It is clear from the test results that shear strength of cracked member is remarkably degraded compared with uncracked one. However, considerable amount of shear resistance by such mechanisms as aggregate interlock and dowel action is still active. There are various approaches to shear transfer estimation including finite element analysis, fracture mechanics, upper bound theory of plasticity, etc., but working out comprehensive and consistent models and manageable equations is rather difficult and remains to be improved. Shear transfer problems under cyclic loading and effective compressive strength of cracked concrete have not been adequately investigated and need further systematic research.

  • PDF