• 제목/요약/키워드: finite member element

검색결과 440건 처리시간 0.03초

유한요소법의 정도수렴 (The Convergence of Accuracy Ratio in Finite Element Method)

  • 조순보
    • 한국공간구조학회논문집
    • /
    • 제3권2호
    • /
    • pp.85-90
    • /
    • 2003
  • If we use a third order approximation for the displacement function of beam element in finite element methods, finite element solutions of beams yield nodal displacement values matching to beam theory results to have no connection with the number increasing of elements of beams. It is assumed that, as the member displacement value at beam nodes are correct, the calculation procedure of beam element stiffness matrix have no numerical errors. A the member forces are calculated by the equations of $\frac{-M}{EI}=\frac{{d^2}{\omega}}{dx^2}\;and\;\frac{dM}{dx}=V$, the member forces at nodes of beams have errors in a moment and a shear magnitudes in the case of smaller number of element. The nodal displacement value of plate subject to the lateral load converge to the exact values according to the increase of the number of the element. So it is assumed that the procedures of plate element stiffness matrix calculations has a error in the fundamental assumptions. The beam methods for the high accuracy ratio solution Is also applied to the plate analysis. The method of reducing a error ratio of member forces and element stiffness matrix in the finite element methods is studied. Results of study were as follows. 1. The matrixes of EI[B] and [K] in the equations of M(x)=EI[B]{q} and M(x) = [K]{q}+{Q} of beams are same. 2. The equations of $\frac{-M}{EI}=\frac{{d^2}{\omega}}{dx^2}\;and\;\frac{dM}{dx}=V$ for the member forces have a error ratio in a finite element method of uniformly loaded structures, so equilibrium node loads {Q} must be substituted in the equation of member forces as the numerical examples of this paper revealed.

  • PDF

유한요소해석을 이용한 차체시작부품 프레스성형 공정 개선 (Improvement of the Stamping Process for Sheet Metal Prototypes of an Auto-body with Finite Element Analysis)

  • 김세호
    • 한국정밀공학회지
    • /
    • 제28권4호
    • /
    • pp.496-504
    • /
    • 2011
  • This paper introduces a CAE-based design procedure in the press forming process for the fabrication of sheet metal parts used in proto-cars. The finite element analysis reveals formability problems during the forming process of a floor member and a front cross member that constitute a rear floor assembly. The study proposes the modification of the initial blank shape or intermediate trimming of the product to prevent failure during forming. It is confirmed by the tryout process as well as the finite element analysis that sound prototype can be obtained with the modified design. The finite element analysis result also provides fairly good prediction of springback amounts used for the post-compensation of the product.

스터드 보울트로 조립된 체결체의 강성 평가 (Determination of Stiffness in Stud Bolted Connection)

  • 김태완;성기광;손용수;박성호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.181-185
    • /
    • 1993
  • A useful finite element method to determine the stiffness of assembled member by stud bolt was introduced in this paper. Since threads on clamped members and stud bolts may produce different stress distribution, brief theories and equations based on bolt and nut may produce less conservative results or, this case. A finite element model using non-linear gap element was indtroduced to find out the basic feature of stress distribution caused by threads on both stud and member.

  • PDF

정현상으로 Taper진 부재의 고유진동수 (Natural Frequencies of Sinusoidally Nonsymmetrically Tapered Members)

  • 강명진;안성기;이수곤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.263-270
    • /
    • 2000
  • It is generally known that the stress and displacement of a member or a system under dynamic load with frequency ω are magnified by the factor 1/[1-(ω/ω/sub 0/)sup/ 2/]. When the member assumes non-prismatic shape, the natural frequency, ω/sub 0/ is hard or impossible to determine if the conventional method are adopted. In these cases, the numerical methods are provide powerful tools for the solution of frequency problems. In this paper, finite element method is applied to determine the natural frequencies of the non-symmetrically tapered members. The shape of the member is assumed to change sinusoidally along its axis. The results obtained by finite element method are expressed by some simple algebraic equations. The estimated frequencies calculated by the proposed equations coincide well with those by the finite element method.

  • PDF

Free vibration of core wall structure coupled with connecting beams

  • Wang, Quanfeng
    • Structural Engineering and Mechanics
    • /
    • 제10권3호
    • /
    • pp.263-275
    • /
    • 2000
  • In this paper, a core wall structure coupled with connecting beams is discretized and modeled as an equivalent thin-walled member with closed section, while the connecting beams between openings are replaced by an equivalent shear diaphragm. Then, a numerical method (finite member element method, FMEM) for dynamic analysis of the core wall structure is proposed. The numerical method combines the advantages of the FMEM and Vlasov's thin-walled beam theory and the effects of torsion, warping and, especially, the shearing strains in the middle surface of the walls are considered. The results presented in this paper are very promising compared with the ones obtained from finite element method.

직선형으로 Taper진 비대칭 변단면 부재의 탄성임계하중 (The Elastic Critical Loads of Linearly Non-symmetrically Tapered Members)

  • 김효중;홍종국;이수곤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.299-306
    • /
    • 2000
  • The elastic critical load of a slender compression member plays an important role when the proper design of that member is required. For tapered compression members, however, there are cases when the conventional neutral equilibrium or energy method can't be applied to the determination of critical loads. In this paper, the finite element method is applied to the approximate determination of the linearly tapered members. In this paper, the bars are assumed to be tapered linearly along their axes. The parameters considered in this study are taper parameter, α and the sectional property parameter, m. The member ends are either hinged or fixed. The computed results using the finite element method are represented in the forms of algebraic equations. The regression technique is employed to determine the coefficients of the algebraic equations. Critical loads estimated by the proposed algebraic equations coincide flirty well with those employing the finite element method.

  • PDF

Virbration Characteristics of a passenger Car Steering Column

  • Lee, Young-Shin;Song, Sun-Young;Park, Myoung-Hwan;Ryu, Chung-Hyun;Kim, Young-Wann
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.130-141
    • /
    • 2000
  • The virbration characteristics of a passenger car steering column are studied by using a modal test and a finite element (FE) analysis. To verify the FE model and the results, an experiment using the impact exciting method is performed. Two types of the steering column in this study are considered as follows; (ⅰ) the non-tilt type steering column and (ⅱ) the upper-tilt type steering column. The experimental results are compared with those o the FE analysis, and it ti shown that the results agree with each other. The effects of various design parameters such as the bracket thickness, the column diameter on the natural frequencies are also investigated by FE analysis.

  • PDF

차량 복합판형부품의 설계개선 기법들 (Design Enhancements for Automotive Integrated Shell Structures)

  • 이형일;서현
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1103-1114
    • /
    • 2000
  • Recent attempt to enhance the safety against collision reshaped the simple shell structures into the integrated complex shell structures. Moreover, due to various regulations continuously tightened for environment protection, weight reduction of automobiles becomes an increasingly important issue. Auto parts lightening is mainly accomplished by more reasonable design, adoption of lighter materials and miniaturization of the auto bodies. Focusing on the locally enhanced design approach among the above three ways, we here attempt to develop a patching optimization method, and also to determine the thicknesses of an integrated shell structure, both bringing a specified amount of stress relaxation. We first select a cross member as a patching optimization model. Based on the finite element stress calculations, we relieve the stress of cross member by patching in two ways-nonuniform thickness patching and optimized uniform thickness patching, the latter of which is more effective in a practical point of view for the preset amount of stress relaxation. Selecting a box type subframe as another finite element analysis model, we then determine the thickness of each part by axiomatic design approach for a preset amount of stress relaxation. The patching methodology and the axiomatic approach adopted in this work can be applied to the other complex shell structures such as center member and lower control arm.

역우산형 쌍곡포물선 쉘의 유한요소해석 (Finite Element Analysis of Inverted Umbrella-type Hyperbolic Paraboloid Shell)

  • 권홍주;유은종;나창순
    • 한국공간구조학회논문집
    • /
    • 제11권1호
    • /
    • pp.87-95
    • /
    • 2011
  • 본 논문에서는 유한요소해석법을 사용하여 역우산형 쌍곡포물선쉘구조물을 해석하고 그 결과를 기존의 막이론에 의한 설계식의 결과치와 비교하였다. 또한 지붕면의 경사도를 달리하며 경사도에 따른 처짐 및 테두리보와 내부경사리브에 작용하는 부재력, 쉘면에 작용하는 막응력의 변화를 살펴보았다. 해석결과 기존의 막응력에 의한 이론해는 테두리보 및 내부경사리브에 대한 부재력을 과대평가하는 반면 막응력에 대해서는 반대로 과소평가를 하고 있는 것으로 나타났다. 유한요소법에 의해 해석한 지붕의 처짐은 경사도가 낮아짐에 따라 급격하게 증가되는 것으로 나타났다.

유한요소법에 의한 횡강도부재의 최소중량설계 (Minimum Weiht Design of Transverse Strength Member by Using Finite Element Method)

  • 나승수;민계식;엄항섭;신동희
    • 대한조선학회지
    • /
    • 제22권3호
    • /
    • pp.27-37
    • /
    • 1985
  • The optimum design of the transverse strength member was carried out with respect to the minimum hull weight taken account of the 2-dimensional analysis by using Finite Element Method. The optimum sizes of the member such as web height, web thickness, lower flange breadth, lower flange thickness, radii, were calculated by using Hooke and Jeeves direct search method. The optimum structure satisfies requirements to allowable bending and shear stresses in each strength member. The optimum design results were compared with the practical ship design. The optimum design saves the hull weight than that of practical design amounts to 9.6% of that.

  • PDF