• Title/Summary/Keyword: finite grounded

Search Result 31, Processing Time 0.021 seconds

Analysis of Symmetric Coupled Line with Crossbar Embedded Structure for Improved Attenuation Characteristics on the Various Lossy Media (다양한 매질내의 손실특성 개선을 위한 크로스바 구조의 대칭 결합선로에 대한 해석)

  • Kim, Yoon-Suk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.61-67
    • /
    • 2010
  • A characterization procedure for analyzing symmetric coupled MIS(Metal-Insulator-Semiconductor) transmission line is used the same procedure as a general single layer symmetric coupled line with perfect dielectric substrate from the extraction of the characteristic impedance and propagation constant for even- and odd-mode. In this paper, an analysis for a new substrate shielding symmetric coupled MIS structure consisting of grounded crossbar at the interface between Si and SiO2 layer using the Finite-Difference Time-Domain (FDTD) method is presented. In order to reduce the substrate effects on the transmission line characteristics, a shielding structure consisting of grounded crossbar lines over time-domain signal has been examined. Symmetric coupled MIS transmission line parameters for even- and odd-mode are investigated as the functions of frequency, and the extracted distributed frequency-dependent transmission line parameters and corresponding equivalent circuit parameters as well as quality factor for the new MIS crossbar embedded structure are also presented. It is shown that the quality factor of the symmetric coupled transmission line can be improved without significant change in the characteristic impedance and effective dielectric constant.

Improvement of Attenuation Characteristics for Multiple Coupled Line Structure on the Specific Lossy Media (특정 손실 매질위의 다중 결합선로에 대한 손실특성 개선)

  • Kim, Yoon-Suk;Kim, Min-Su
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.12
    • /
    • pp.35-41
    • /
    • 2011
  • In this paper, an analysis for a new substrate shielding symmetric coupled MIS structure consisting of grounded crossbar at the interface between Si and SiO2 layer using the Finite-Difference Time-Domain(FDTD) method is presented. In order to reduce the substrate effects on the transmission line characteristics, a shielding structure consisting of grounded crossbar lines over time-domain signal has been examined. Parameters of symmetric coupled MIS transmission line with various gaps between crossbars for even- and odd-mode are investigated as the functions of frequency, and the extracted distributed frequency-dependent transmission line parameters and corresponding equivalent circuit parameters as well as quality factor for the new MIS crossbar embedded structure are also presented. It is shown that the quality factor of the symmetric coupled transmission line can be improved without significant change in the characteristic impedance and effective dielectric constant.

Radiation Characteristics of Microstrip Patch Antennas with a Finite Grounded Square Substrate (유한한 정사각형 기판을 가지는 마이크로스트립 패치 안테나의 방사 특성)

  • Kim, Tae-Young;Park, Jea-Woo;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.118-127
    • /
    • 2009
  • Effect of a finite square substrate plane on the radiation characteristics of a microstrip patch antenna is investigated. Excellent agreements between the simulation and measured results on the radiation characteristics of patch antennas for various square substrate thicknesses and sizes are obtained. The effect of a square substrate plane on the resonant frequency and bandwidth is small, while that on the radiation pattern is large. As the substrate thickness increases, the variations of the gain of the broadside radiation, the direction of the maximum radiation, and the radiation pattern increase for the variation of a substrate size. The maximum gain difference between the broadside radiation and back radiation and the large gain of broadside radiation are obtained when the length of a side of a square substrate plane is $0.8\;{\lambda}_0$.

Effect of a Finite Substrate Size on the Radiation Characteristics of Two-Element Linear E-plane Array Antennas (유한한 기판 크기가 2소자 E-평면 선형 배열 안테나의 방사 특성에 미치는 영향)

  • Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.95-110
    • /
    • 2012
  • The effect of a finite substrate size on the radiation characteristics of a two-element linear E-plane array antenna using microstrip patch antennas is investigated. The average active element pattern characteristics of two-element E-plane array antennas printed on different dielectric constant substrates with various substrate sizes and element spacings are analyzed. Using the average active element pattern, the radiation pattern characteristics of the array antenna versus scan angle is analyzed. The simulation results show that the diffracted fields of surface waves from substrate edges have a significant effect on the radiation characteristics of a 2-element E-plane array antenna. The distance between the center of patch antenna and the substrate edges on the E-plane for the enhancement of radiation characteristics of the array antenna is about $0.35{\lambda}_0$.

Effect of a Finite Substrate on the Mutual Coupling of a Pair of Microstrip Patch Antennas along the H-plane (유한한 기판 크기가 H-평면상에 배열된 두 개의 패치안테나간의 상호결합에 미치는 영향)

  • Kim, Gun-Su;Kim, Tae-Young;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.67-73
    • /
    • 2010
  • In this paper, the effect of a finite substrate on the mutual coupling of a pair of microstrip patch antennas along the H -plane is investigated. The mutual coupling of a pair of microstrip patch antennas can be reduced using the interference effect due to the phase difference by a variety of routes of the surface wave. In the case of the substrate with $\varepsilon_r$=10 and thickness of 3.2 mm, the mutual coupling is reduced by 4.85 dB on the substrate size with the strong mutual coupling, while the mutual coupling is reduced by 34.28 dB on the substrate size with the weak mutual coupling when the distance between the antenna centers is varied from 0.5 $\lambda_0$ to 1.0 $\lambda_0$. In the case of optimization substrate size, the decreasing rate of the mutual coupling with the increase of the distance between the antenna centers is very large. Good agreements between the image method and full wave simulation results are obtained.

Dispersion Analysis of Higher-Order Modes for Planar Transmission Lines Using the 2-Dimensional Finite-Difference Time-Domain Method (2차원 유한차분-시간영역 방법을 이용한 평면형 전송선로의 고차 모드 분산 특성 해석)

  • 전중창;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.847-854
    • /
    • 1999
  • In this paper, we have analysed frequency-dispersion characteristics of higher-order modes for uniform planar transmission lines, using the 2-dimensional finite-difference time-domain method. The method presented in this paper uses both informations of amplitude and phase of the electromagnetic spectrum to determine resonant frequencies, while methods previously reported use the magnitude only. This algorithm is very useful when a resonant mode has a relatively small magnitude, where the identification of the resonant mode is quite difficult. Numerical results show that a strip line supports few higher-order modes within the frequency range of 20 GHz, but there occur many higher-order modes in the structure of grounded coplanar waveguide, where resonant frequencies of the first higher-order mode is very close to those of the fundamental mode and there occur lots of very adjacent higher-order modes. As in this example, for the analysis of planar transmission lines which support many resonant modes very close each other, the method presented in this paper can be applied very efficiently.

  • PDF

A Design of Multi-band Antenna using asymmetric Bow-tie structure (비대칭 보우 타이 구조를 이용한 다중 대역 안테나 설계)

  • Jang, Jeong-Seok;Kim, Dae-Woong;Choi, Yong-Gyu;Hong, Ui-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.2
    • /
    • pp.41-50
    • /
    • 2010
  • In this paper, a multi-band antenna with novel structure for mobile communications is designed and fabricated. The proposed antenna has the Multi-band antenna characteristics by two common-grounded slots with different size and angle. In order to reduce size and to enhance the gain of the antenna, a reflector is consisted of chokes on the three sides. It is optimized by using the CST Microwave Studio commercial software based on the FIA(Finite Integration Algorithm) and PBA(Perfect Boundary Approximation), and then the fabricating and measuring is practiced. As a result of measurement, the reflection coefficient is less than -11 dB(VSWR < 1.8) and the gain of antenna is more than 6dBi at 824~894MHz and 1885-2500MHz.

Numerical Evaluation of charged Liquid Particle′s Behavior in Fluid Flow and Electric Field and The Electric Effect on the Particle Dispersion (유동과 전기장 내에서의 액체입자의 거동과 전기장이 입자의 산란에 미치는 영향에 관한 수치적 연구)

  • Kim, Hyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.570-577
    • /
    • 2002
  • Charged liquid particle's behavior in electric and flow field was simulated to define the effect of electric field on the contact area and its dispersion. For the simulation of flow and electric field finite volume method was applied. To find out the particle's moving path in that field lagrangian equation of motion was solved by Runge-Kutta methods. We assumed that the particle was charged 10% of Rayleigh limit while the particle passing through the electrode and the particle does not have an effect on the electric field. In case of 30[Kv] of voltage charging the particles injected from the central 60% of the nozzle injection area adhere to the grounded moving plate and no dispersion occurred. Increasing the charged voltage to 40[Kv], it brought about the same phenomena as that of 30[Kv] charging except the dispersion. Voltage increasing from 30[Kv] to 40 [Kv] caused higher Coulomb force acts on the particle and it made the particle dispersion.

An analytical solution for static analysis of a simply supported moderately thick sandwich piezoelectric plate

  • Wu, Lanhe;Jiang, Zhiqing;Feng, Wenjie
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.641-654
    • /
    • 2004
  • This paper presents a theoretic model of a smart structure, a transversely isotropic piezoelectric thick square plate constructed with three laminas, piezoelectric-elastic-piezoelectric layer, by adopting the first order shear deformation plate theory and piezoelectric theory. This model assumes that the transverse displacements through thickness are linear, and the in-plane displacements in the mid-plane of the plate are not taken to be account. By using Fourier's series expansion, an exact Navier typed analytical solution for deflection and electric potential of the simply supported smart plate is obtained. The electric boundary conditions are being grounded along four vertical edges. The external voltage and non-external voltage applied on the surfaces of piezoelectric layers are all considered. The convergence of the present approach is carefully studied. Comparison studies are also made for verifying the accuracy and the applicability of the present method. Then some new results of the electric potentials and displacements are provided. Numerical results show that the electrostatic voltage is approximately linear in the thickness direction, while parabolic in the plate in-plane directions, for both the deflection and the electric voltage. These results are very useful for distributed sensing and finite element verification.

Comparison of residual strength-grounding damage index diagrams for tankers produced by the ALPS/HULL ISFEM and design formula method

  • Kim, Do Kyun;Kim, Han Byul;Mohd, Mohd Hairil;Paik, Jeom Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.47-61
    • /
    • 2013
  • This study compares the Residual ultimate longitudinal strength - grounding Damage index (R-D) diagrams produced by two analysis methods: the ALPS/HULL Intelligent Supersize Finite Element Method (ISFEM) and the design formula (modified Paik and Mansour) method - used to assess the safety of damaged ships. The comparison includes four types of double-hull oil tankers: Panamax, Aframax, Suezmax and VLCC. The R-D diagrams were calculated for a series of 50 grounding scenarios. The diagrams were efficiently sampled using the Latin Hypercube Sampling (LHS) technique and comprehensively analysed based on ship size. Finally, the two methods were compared by statistically analysing the differences between their grounding damage indices and ultimate longitudinal strength predictions. The findings provide a useful example of how to apply the ultimate longitudinal strength analysis method to grounded ships.