• Title/Summary/Keyword: finite factorization

Search Result 43, Processing Time 0.021 seconds

A WEAKER NOTION OF THE FINITE FACTORIZATION PROPERTY

  • Henry Jiang;Shihan Kanungo;Hwisoo Kim
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.313-329
    • /
    • 2024
  • An (additive) commutative monoid is called atomic if every given non-invertible element can be written as a sum of atoms (i.e., irreducible elements), in which case, such a sum is called a factorization of the given element. The number of atoms (counting repetitions) in the corresponding sum is called the length of the factorization. Following Geroldinger and Zhong, we say that an atomic monoid M is a length-finite factorization monoid if each b ∈ M has only finitely many factorizations of any prescribed length. An additive submonoid of ℝ≥0 is called a positive monoid. Factorizations in positive monoids have been actively studied in recent years. The main purpose of this paper is to give a better understanding of the non-unique factorization phenomenon in positive monoids through the lens of the length-finite factorization property. To do so, we identify a large class of positive monoids which satisfy the length-finite factorization property. Then we compare the length-finite factorization property to the bounded and the finite factorization properties, which are two properties that have been systematically investigated for more than thirty years.

A CHARACTERIZATION OF FINITE FACTORIZATION POSITIVE MONOIDS

  • Polo, Harold
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.669-679
    • /
    • 2022
  • We provide a characterization of the positive monoids (i.e., additive submonoids of the nonnegative real numbers) that satisfy the finite factorization property. As a result, we establish that positive monoids with well-ordered generating sets satisfy the finite factorization property, while positive monoids with co-well-ordered generating sets satisfy this property if and only if they satisfy the bounded factorization property.

FACTORIZATION PROPERTIES ON THE COMPOSITE HURWITZ RINGS

  • Dong Yeol Oh
    • Korean Journal of Mathematics
    • /
    • v.32 no.1
    • /
    • pp.97-107
    • /
    • 2024
  • Let A ⊆ B be an extension of integral domains with characteristic zero. Let H(A, B) and h(A, B) be rings of composite Hurwitz series and composite Hurwitz polynomials, respectively. We simply call H(A, B) and h(A, B) composite Hurwitz rings of A and B. In this paper, we study when H(A, B) and h(A, B) are unique factorization domains (resp., GCD-domains, finite factorization domains, bounded factorization domains).

Study of Spectral Factorization using Circulant Matrix Factorization to Design the FIR/IIR Lattice Filters (FIR/IIR Lattice 필터의 설계를 위한 Circulant Matrix Factorization을 사용한 Spectral Factorization에 관한 연구)

  • 김상태;박종원
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.437-447
    • /
    • 2003
  • We propose the methods to design the finite impulse response (FIR) and the infinite impulse response (IIR) lattice filters using Schur algorithm through the spectral factorization of the covariance matrix by circulant matrix factorization (CMF). Circulant matrix factorization is also very powerful tool used fur spectral factorization of the covariance polynomial in matrix domain to obtain the minimum phase polynomial without the polynomial root finding problem. Schur algorithm is the method for a fast Cholesky factorization of Toeplitz matrix, which easily determines the lattice filter parameters. Examples for the case of the FIR Inter and for the case of the IIR filter are included, and performance of our method check by comparing of our method and another methods (polynomial root finding and cepstral deconvolution).

A NOTE ON ASCEND AND DESCEND OF FACTORIZATION PROPERTIES

  • Shah Tariq
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.419-424
    • /
    • 2006
  • In this paper we extend the study of ascend and descend of factorization properties (for atomic domains, domains satisfying ACCP, bounded factorization domains, half-factorial domains, pre-Schreier and semirigid domains) to the finite factorization domains and idf-domains for domain extension $A\;{\subseteq}\;B$.

Design of FIR/IIR Lattice Filters using the Circulant Matrix Factorization (Circulant Matrix Factorization을 이용한 FIR/IIR Lattice 필터의 설계)

  • Kim Sang-Tae;Lim Yong-Kon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.1
    • /
    • pp.35-44
    • /
    • 2004
  • We Propose the methods to design the finite impulse response (FIR) and the infinite impulse response (IIR) lattice filters using Schur algorithm through the spectral factorization of the covariance matrix by circulant matrix factorization (CMF). Circulant matrix factorization is also very powerful tool used for spectral factorization of the covariance polynomial in matrix domain to obtain the minimum phase polynomial without the polynomial root finding problem. Schur algorithm is the method for a fast Cholesky factorization of Toeplitz matrix, which easily determines the lattice filter parameters. Examples for the case of the FIR filter and for the case of the In filter are included, and performance of our method check by comparing of our method and another methods (polynomial root finding and cepstral deconvolution).

The polynomial factorization over GF($2^n$) (GF($2^n$) 위에서의 다항식 일수분해)

  • 김창한
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.3
    • /
    • pp.3-12
    • /
    • 1999
  • The public key crytptosystem is represented by RSA based on the difficulty of integer factorization and ElGamal cryptosystem based on the intractability of the discrete logarithm problem in a cyclic group G. The index-calculus algorithm for discrete logarithms in GF${$q^n$}^+$ requires an polynomial factorization. The Niederreiter recently developed deterministic facorization algorithm for polynomial over GF$q^n$ In this paper we implemented the arithmetic of finite field with c-language and gibe an implementation of the Niederreiter's algorithm over GF$2^n$ using normal bases.

Study on Robustness of Incomplete Cholesky Factorization using Preconditioning for Conjugate Gradient Method (불완전분해법을 전처리로 하는 공액구배법의 안정화에 대한 연구)

  • Ko, Jin-Hwan;Lee, Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.276-284
    • /
    • 2003
  • The preconditioned conjugate gradient method is an efficient iterative solution scheme for large size finite element problems. As preconditioning method, we choose an incomplete Cholesky factorization which has efficiency and easiness in implementation in this paper. The incomplete Cholesky factorization mettled sometimes leads to breakdown of the computational procedure that means pivots in the matrix become minus during factorization. So, it is inevitable that a reduction process fur stabilizing and this process will guarantee robustness of the algorithm at the cost of a little computation. Recently incomplete factorization that enhances robustness through increasing diagonal dominancy instead of reduction process has been developed. This method has better efficiency for the problem that has rotational degree of freedom but is sensitive to parameters and the breakdown can be occurred occasionally. Therefore, this paper presents new method that guarantees robustness for this method. Numerical experiment shows that the present method guarantees robustness without further efficiency loss.

RECURSIVE TWO-LEVEL ILU PRECONDITIONER FOR NONSYMMETRIC M-MATRICES

  • Guessous, N.;Souhar, O.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.19-35
    • /
    • 2004
  • We develop in this paper some preconditioners for sparse non-symmetric M-matrices, which combine a recursive two-level block I LU factorization with multigrid method, we compare these preconditioners on matrices arising from discretized convection-diffusion equations using up-wind finite difference schemes and multigrid orderings, some comparison theorems and experiment results are demonstrated.

Factorization of Polynomials With Integer Coefficients (정수계수위에서의 다항식의 인수분해)

  • 조인호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.1 no.1
    • /
    • pp.97-101
    • /
    • 1991
  • The polynomial factorization problem is important not only number theorly but chyptology with Discrete logarithm. We factorized polynolmials with integer coefficients by means of factori-zing polynomials on a finite field by Hensel's Lifting Lemma and finding factors of pol;ynomial with integer coeffcients.