A NOTE ON ASCEND AND DESCEND OF FACTORIZATION PROPERTIES

TARIQ SHAH

ABSTRACT. In this paper we extend the study of ascend and descend of factorization properties (for atomic domains, domains satisfying ACCP, bounded factorization domains, half-factorial domains, pre-Schreier and semirigid domains) to the finite factorization domains and idf-domains for domain extension $A \subseteq B$.

Following Cohn [5], we say that R is atomic domain if each nonzero nonunit of R is a product of finite number of irreducible elements (atoms) of R. It is well-known that any UFD or Noetherian domain is atomic. We say that an integral domain R satisfies the ascending chain condition on principal ideals (ACCP) if there does not exist an infinite strictly ascending chain of principal ideals of R. An integral domain R satisfies ACCP if and only if $R[\{X_{\alpha}\}]$ satisfies ACCP for any family of indeterminates $\{X_{\alpha}\}$ (cf. [3, Page 5]). But by Roitman [9] the polynomial extension R[X] is not atomic whenever R is atomic domain, in general. It is well-known that any domain satisfying ACCP is an atomic but the converse does not hold (cf. [7]) (see also [9] and [13]).

By [3] an atomic domain R is a bounded factorization domain (BFD) if for each nonzero nonunit $x \in R$, there is a positive integer N(x) such that whenever $x = x_1 \cdots x_n$ as a product of irreducible elements of R, then $n \leq N(x)$ (equivalently, we may just assume that each x_i is a nonunit of R (cf. [3, Theorem 2.4]). Noetherian and Krull domains are BFDs ([3, Proposition 2.2]). Also a BFD satisfies ACCP but the converse is not true (cf. [3, Example 2.1]).

In [12] Zaks introduced the notions of half-factorial domains, by the same, an atomic domain R is a half-factorial domain (HFD) if for each nonzero nonunit element x of R, if $x = x_1 \cdots x_m = y_1 \cdots y_n$ with each x_i, y_j irreducible in R, then m = n. Obviously a UFD is an HFD but converse is not true, for example $\mathbb{Z}[\sqrt{-3}]$, and an HFD is a BFD (cf. [3]).

Received April 6, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 13B25, 13G05.

Key words and phrases: condition*, FFD, idf-domain.

In general HFDs do not behave very well under extensions. By [3, Page 11], if R[X] is an HFD, then certainly R is an HFD. However, R[X] need not be an HFD if R is an HFD. For example the domain $R = \mathbb{R} + X\mathbb{C}[X]$ is an HFD, but R[Y] is not an HFD since $(X(1+iY))(X(1-iY)) = X^2(1+Y^2)$ are factorizations into irreducibles of different lengths (cf. [3, Page 11]).

In order to measure how far an atomic domain R is being an HFD, by [1, page 217], the elasticity of R is defined as

 $\rho(R) = \sup\{m/n : x_1 \cdots x_m = y_1 \cdots y_n, \text{ each } x_i, y_j \in R \text{ is irreducible}\}.$ Thus $1 \le \rho(R) \le \infty$ and $\rho(R) = 1$ if and only if R is HFD.

By [3] R is an *idf-domain* if each nonzero element of R has atmost a finite number of non-associate irreducible divisors and UFDs are examples of idf-domains. Moreover, Noetherian domain $R = \mathbb{R} + X\mathbb{C}[X]$ is an HFD but not an idf-domain(cf. [3, Example 4.1(a)]).

By [3] R is a finite factorization domain(FFD) if each nonzero nonunit of R has a finite number of non-associate divisors and hence, only a finite number of factorizations upto order and associates. An FFD is not an HFD and vise versa. Moreover, an integral domain R is an FFD if and only if R is an atomic idf-domain (cf. [3, Theorem 5.1]). In general,

FFD
$$\Leftarrow$$
 UFD \Rightarrow HFD \Rightarrow BFD \Rightarrow ACCP \Rightarrow Atomic and Atomic \Leftarrow ACCP \Leftarrow BFD \Leftarrow FFD \Rightarrow idf-domin.

But none of the above implications is reversible.

According to [5] and [11], an element x of an integral domain R is called primal if whenever x divides a product a_1a_2 with $a_1, a_2 \in R$, then x can be written as $x = x_1x_2$ such that x_i divides a_i , i = 1, 2 (an element whose divisors are primal elements is called a completely primal). A domain R is called a pre-Schreier if every nonzero element $x \in R$ is primal. An integrally closed pre-Schreier domain is called a Schreier domain. By [5], any GCD-domain (a domain R is called a GCD-domain if every pair of elements of R has a greatest common divisor) is a Schreier domain.

Following Zafrullah [10], we say that an element x of integral domain R is said to be rigid if whenever r, $s \in R$ and r, s divides x, we have s divides r or r divides s. Also s is known to be semirigid if every nonzero element of s can be expressed as a product of a finite number of rigid elements.

By [6, page 326], for a (commutative) ring extension $A \subseteq B$, the conductor of A in B is the largest common ideal $A : B = \{x \in A : xB \subseteq A : xB \subseteq A : xB \subseteq B \}$

A) of A and B. In [8], the whole study is based on the conductor ideal A: B and on the Condition*: Let $A \subseteq B$ be a (commutative) ring extension. For each $x \in B$ there exist $x' \in U(B)$ and $x'' \in A$ such that x = x'x'', in which we established a criterion for ascend and descend of factorization properties.

In the following we restate ([8, Proposition 2.6, Proposition 2.7 and Theorem 2.10]) as:

Let $A \subseteq B$ be a domain extension which satisfies the *Condition** and M = A : B is a maximal ideal in A.

(1)

- (a) Then A is atomic if and only if B is atomic.
- (b) If A is atomic, then $\rho(A) = \rho(B)$.
- (c) Then A satisfies ACCP if and only if B satisfies ACCP.
- (d) Then A is a BFD if and only if B is a BFD.
- (e) Then A is an HFD if and only if B is an HFD.
- (2) If A is a $pre-Schreier\ ring$, then B is a $pre-Schreier\ ring$.
- (3) If A is a semirigid domain, then B is a semirigid daomain.

In this paper we extend the study of ascend and descend of factorization properties to idf-domains and FFDs for a domain extension $A \subseteq B$ which satisfies the Condition* whereas M = A:B is a maximal ideal in A. But first we give some examples of ring extensions satisfying the Condition*.

EXAMPLE 1. (a) If B is a fraction ring of A, then ring extension $A \subseteq B$ satisfies Condition*. Hence the ring extension $A \subseteq B$ satisfies Condition* is the generalization of a localization.

- (b) If B is a field, then ring extension $A \subseteq B$ satisfies Condition *.
- (c) If the ring extensions $A \subseteq B$ and $B \subseteq C$ satisfy Condition*, then so does the ring extension $A \subseteq C$.
- (d) If the ring extensions $A \subseteq B$ satisfies Condition*, then the ring extension $A + XB[X] \subseteq B[X]$ (or $A + XB[[X]] \subseteq B[[X]]$) also satisfies Condition*.

THEOREM 1. Let $A \subseteq B$ be the domain extension which satisfies the Condition* and M = A : B is a maximal ideal in A. If A is an idf-domain, then B is an idf-domain.

Proof. Suppose A be an idf-domain and let x be a nonzero element of B. Therefore there exist $x' \in U(B)$ and $x'' \in A$ such that x = x'x''. Since x'' has finite number of irreducible divisors in A, which are also irreducibles in B, by [8, Theorem 2.5(d)]. Hence each nonzero element of B has finite number of irreducible divisors in B.

THEOREM 2. Let $A \subseteq B$ be the domain extension which satisfies the Condition* and M = A : B is maximal ideal in A. If A is an FFD, then B is an FFD.

Proof. Follows by [3, Theorem 5.1], [8, Proposition 2.6(a)] and Theorem 1. \Box

The converse of Theorem 1 and Theorem 2 is not true because if we consider the domain extension $A = \mathbb{R} + X\mathbb{C}[X] \subseteq \mathbb{C}[X] = B$ which satisfies the Condition* and $M = A : B = X\mathbb{C}[X]$ is a maximal ideal in A. As $\mathbb{C}[X]$ being a UFD is an idf-domain but $\mathbb{R} + X\mathbb{C}[X]$ is not an idf-domain (cf. [3, Example 4.1(a)]). Moreover it is observed that $U(B) \cap A = U(A)$ and U(B)/U(A) is infinite. On the other hand for the field extension $F_1 \subseteq F_2$, the domain $F_1 + XF_2[X]$ (or $F_1 + XF_2[[X]]$) is an FFD if and only if F_2^*/F_1^* is finite which is only possible if $F_1 = F_2$ or F_2 is finite (cf. [4, Example 5]).

REMARK 1. Let $A \subseteq B$ be the domain extension which satisfies the Condition* and M=A:B be a maximal ideal in A. Let B be an idf-domain and let x be a nonzero element of A. Therefore x being an element of B has finite number of irreducible divisors in B, say d_1, d_2, \ldots, d_n and hence $x=bd_1d_2\cdots d_n$, where $b\in B$. But x=x'x'', with $x''\in A$ and $x'\in U(B)$. Therefore

$$x = x'x'' = bd_1d_2\cdots d_n.$$

This implies

$$x'' = (x')^{-1}bd_1d_2 \cdots d_n$$

$$= (x')^{-1}b'b''d'_1d''_1d'_2d''_2 \cdots d'_nd''_n$$

$$= ((x')^{-1}b'd'_1d'_2 \cdots d'_n)b''d''_1d''_2 \cdots d''_n.$$

Here $(x')^{-1}, b', d'_1, d'_2, \ldots, d'_n \in U(B)$ and $b'', d''_1, d''_2, \ldots, d''_n \in A$. Hence by [8, Theorem 2.5(b)], whenever $d_i \in M$, d_i is irreducible in A if and only if d_i is irreducible in B, so in this case $d_i = 1d_i$. Now if $d_i \in B \setminus M$, then d_i is irreducible in B if and only if d''_i is irreducible in A, where $d_i = d'_i d''_i$ with $d'_i \in U(B)$ and $d''_i \in A$ (cf. [8, Theorem 2.5(c)]). Since $b'd'_1 d'_2 \cdots d'_n = u \in U(B)$, therefore

$$x = x'((x')^{-1}b'd'_1d'_2\cdots d'_n)b''d''_1d''_2\cdots d''_n$$

= $ub''d''_1d''_2\cdots d''_n$.

Now if $x \in A \setminus M$, then $u \in A$ (by [8, Lemma 2.3(a)]). Since $U(B) \cap A = U(A)$ (by [8, Proposition 2.2(c)]), therefore $u \in U(A)$. Similarly if $x \in M$, then either $b'' \in M$ or $b'' \in A \setminus M$. It is obvious that for

 $b'' \in M$, $ub'' \in A$. However it is not always true that for $b'' \in A \setminus M$ and $u \in U(B) \setminus U(A)$, $ub'' \in A$. To make this always happen that $ub'' \in A$, we may assume that U(B) = U(A). If a domain extension $A \subseteq B$ satisfies the Condition* such that U(B) = U(A), then A = B. But if $F_1 \subseteq F_2$ is proper finite field extension, then the domain extension $A = F_1[X] \subseteq F_1 + XF_2[X] = B$ is such that U(B) = U(A), which does not satisfies the Condition*. Surprisingly both A and B are FFDs and hence idf-domains.

REMARK 2. In the domain extension $A = \mathbb{Z}_{(2)} + X\mathbb{R}[[X]] \subseteq \mathbb{R}[[X]] = \mathbb{R} + X\mathbb{R}[[X]] = B$, A and B are idf-domains (cf. [3, Page 13]). Obviously this extension satisfies Condition* but A:B is not a maximal ideal in A. On the other hand in the domain extension $A = \mathbb{Z}_{(2)} + X\mathbb{R}[[X]] \subseteq \mathbb{Q} + X\mathbb{R}[[X]] = C$, A is an idf-domain but C is not an idf-domain because $\mathbb{R}^*/\mathbb{Q}^*$ is not finite. Here we have also observed that the domain extension $A \subseteq C$ satisfies the Condition*, indeed; as $\mathbb{Z}_{(2)} \subseteq \mathbb{Q}$ satisfies Condition*, so if $h(X) = q + X\sum_{i \geq 0} r_i X^i \in \mathbb{Q} + X\mathbb{R}[[X]]$, then q = q'q'', where $q' \in \mathbb{Q}^* = U(\mathbb{Q} + X\mathbb{R}[[X]])$, $q'' \in \mathbb{Z}_{(2)}$, hence $h(X) = q'(q'' + X\sum_{i \geq 0} (q')^{-1} r_i X^i)$, where $q'' + X\sum_{i \geq 0} (q')^{-1} r_i X^i \in \mathbb{Z}_{(2)} + X\mathbb{R}[[X]]$. Moreover A:C is not a maximal ideal in A.

REMARK 3. Following [2, Example 5.3], let V be a valuation domain and F be its quotient field such that F is the countable union of an increasing family $\{V_i\}$ of valuation overrings of V. Let K be a proper field extension of F and K^*/F^* is infinite. Then each $R_i = V_i + XK[[X]]$ is an idf-domain. However $R = \bigcup R_i = F + XK[[X]]$ is not an idf-domain because K^*/F^* is infinite. By this example we have observed several interesting situations regarding the ascend and descend of factorization properties for domain extension.

- (i) The domain extension $V_i + XK[[X]] \subseteq K[[X]]$ satisfies the Condition* as the extension $V_i \subseteq K$ satisfies the Condition*. But XK[[X]] is not a maximal ideal in $V_i + XK[[X]]$ and such that $U(V_i + XK[[X]]) \neq U(K[[X]])$. In this case both $V_i + XK[[X]]$ and K[[X]] are idf-domains.
- (ii) The domain extension $V_i + XK[[X]] \subseteq F + XK[[X]]$ satisfies the Condition* but XK[[X]] is not a maximal ideal in $V_i + XK[[X]]$ and such that $U(V_i + XK[[X]]) \neq U(F + XK[[X]])$. In this case $V_i + XK[[X]]$ is an idf-domain but F + XK[[X]] is not an idf-domain.
- (iii) The domain extension $F+XK[[X]]\subseteq K[[X]]$ satisfies the Condition* such that $U(F+XK[[X]])\neq U(K[[X]])$ and XK[[X]] is maximal ideal in F+XK[[X]]. But F+XK[[X]] is not an FFD whereas the domain K[[X]] is an FFD.

References

- [1] D. D. Anderson and D. F. Anderson, Elasticity of factorizations in integral domains, J. Pure Appl. Algebra 80 (1992), no. 3, 217–235.
- [2] D. D. Anderson, D. F. Anderson, and M. Zafrullah, Factorization in integral domains, II, J. Algebra 152 (1992), no. 1, 78-93.
- [3] ______, Factorization in integral domains, J. Pure Appl. Algebra **69** (1990), no. 1, 1–19.
- [4] D. D. Anderson and B. Mullinns, Finite Factorization Domains, Proc. Amer. Math. Soc. 124 (1996), no. 2, 389-396.
- [5] P. M. Cohn, Bezout rings and their subrings, Proc. Cambridge Philos. Soc. 64 (1968), 251-264.
- [6] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- [7] A. Grams, Atomic rings and the ascending chain condition for principal ideals, Proc. Cambridge Philos. Soc. **75** (1974), 321–329.
- [8] N. Radu, S. O. Ibrahim Al-Salihi, and T. Shah, Ascend and descend of factorization properties, Rev. Roumaine Math. Pures Appl. 45 (2000), 4, 659-669.
- [9] M. Roitman, *Polynomial extensions of atomic domains*, J. Pure Appl. Algebra **87** (1993), no. 2, 187–199.
- [10] M. Zafrullah, Semirigid GCD domain, Manuscripta Math. 17 (1975), no. 1, 55–66.
- [11] _____, On a property of pre-Schreier domains, Comm. Algebra 15 (1987), no. 9. 1895–1920.
- [12] A. Zaks, Half factorial domain, Bull. Amer. Math. Soc. 82 (1976), no. 6, 721-723.
- [13] ______, Atomic rings without a.c.c. on principal ideals, J. Algebra 74 (1982), no. 1, 223-231.

DEPARTMENT OF MATHEMATICS, QUAID-I-AZAM UNIVERSITY ISLAMABAD, PAKISTAN E-mail: stariqshah@gmail.com