• 제목/요약/키워드: finite element theory

검색결과 1,566건 처리시간 0.025초

강소성 유한요소법을 이용한 평면 이방성 재료의 디프 드로잉 해석 (Analysis of Deep Drawing of Planar Anisotropic Materials Using the Rigid- Plastic Finite Element Method)

  • 김형종;김동원
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.248-258
    • /
    • 1992
  • Three-dimensional rigid-plastic finite element formulation based on the membrane theory was described and a computer program for large deformation analysis was developed. In the formulation, normal and planar anisotropy of sheet material and rotation of the principal axes of anisotropy was taken into consideration. Sheet metal was assumed to be rigid-plastic material obeying Hill's quadratic yield criterion and its associated flow rule. Deep drawing process, as a preliminary test, for normal anisotropic material was analyzed in order to examine the validity of developed finite element program. The results were consistent with the existing finite element solutions or experimental data. The present study was mainly concerned with the influence of planar anisotropy on deformation behaviour. Finite element analysis and experiment were carried out for the whole process of deep drawing of planar anisotropic material. The computational and experimental results on the shape of ear, strain distribution and punch load were in good agreement.

Vibration and buckling of laminated beams by a multi-layer finite element model

  • Kahya, Volkan;Turan, Muhittin
    • Steel and Composite Structures
    • /
    • 제28권4호
    • /
    • pp.415-426
    • /
    • 2018
  • This paper presents a multi-layer finite element for buckling and free vibration analyses of laminated beams based on a higher-order layer-wise theory. An N-layer beam element with (9N + 7) degrees-of-freedom is proposed for analyses. Delamination and slip between the layers are not allowed. Element matrices for the single- and multi-layer beam elements are derived by Lagrange's equations. Buckling loads and natural frequencies are calculated for different end conditions and lamina stacking. Comparisons are made to show the accuracy of proposed element.

다층 층간분리된 적층 판의 유한요소 자유진동해석 (Finite Element Analysis for Free Vibration of Laminated Plates Containing Multi-Delamination)

  • Taehyo Park;Seokoh Ma
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.37-44
    • /
    • 2003
  • In this proposed work, computational, finite element model far multi-delaminated plates will be developed. In the current analysis procedures of multi-delaminated plates, different elements are used at delaminated and undelaminated region separately. In the undelaminated region, plate element based on Mindlin plate theory is used in order to obtain accurate results of out-of-plane displacement of thick plate. And for delaminated region, plate element based on Kirchhoff plate theory is considered. To satisfy the displacement continuity conditions, displacement vector based on Kirchhoff theory is transformed to displacement of transition element. Element mass and stiffness matrices of each region (delaminated, undelaminated and transition region) will be assembled for global matrix.

  • PDF

Bilinear plate bending element for thin and moderately thick plates using Integrated Force Method

  • Dhananjaya, H.R.;Nagabhushanam, J.;Pandey, P.C.
    • Structural Engineering and Mechanics
    • /
    • 제26권1호
    • /
    • pp.43-68
    • /
    • 2007
  • Using the Mindlin-Reissner plate theory, many quadrilateral plate bending elements have been developed so far to analyze thin and moderately thick plate problems via displacement based finite element method. Here new formulation has been made to analyze thin and moderately thick plate problems using force based finite element method called Integrated Force Method (IFM). The IFM is a novel matrix formulation developed in recent years for analyzing civil, mechanical and aerospace engineering structures. In this method all independent/internal forces are treated as unknown variables which are calculated by simultaneously imposing equations of equilibrium and compatibility conditions. In this paper the force based new bilinear quadrilateral plate bending element (MQP4) is proposed to analyze the thin and moderately thick plate bending problems using Integrated Force Method. The Mindlin-Reissner plate theory has been used in the formulation of this element which accounts the effect of shear deformation. Standard plate bending benchmark problems are analyzed using the proposed element MQP4 via Integrated Force Method to study its performance with respect to accuracy and convergence, and results are compared with those of displacement based 4-node quadrilateral plate bending finite elements available in the literature. The results are also compared with the exact solutions. The proposed element MQP4 is free from shear locking and works satisfactorily in both thin and moderately thick plate bending situations.

박막/쉘 혼합요소의 판별조건과 강소성/탄소성 유한요소해석 적용에 관한 연구 (A Study on the Criterion for Membrane/Shell Mixed Element and Application to the Rigid-Plastic/Elastic-Plastic Finite Element Analysis)

  • 정동원;양경부
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.1-10
    • /
    • 1999
  • This study is concerned with the application of new criterion for membrane/shell mixed element in the rigid-plastic finite element analysis and elastic-plastic finite element analysis. The membrane/shell mixed element can be selctively adapted to the pure stretching condition by using membrane or a shell element in the bending effect areas. Thus, membrane/shell mixed element requires a efficient criterion for a distinction between membrane and shell element. In the present study introduce the criterion using the angle of between two element and confirm a generality of criterion from appling the theory to a rigid-plastic and elastic-plastic problems.

  • PDF

Finite element vibration analysis of laminated composite parabolic thick plate frames

  • Das, Oguzhan;Ozturk, Hasan;Gonenli, Can
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.43-59
    • /
    • 2020
  • In this study, free vibration analysis of laminated composite parabolic thick plate frames by using finite element method is introduced. Governing equations of an eigenvalue problem are obtained from First Order Shear Deformation Theory (FSDT). Finite element method is employed to obtain natural frequency values from the governing differential equations. The frames consist of two flat square plates and one singly curved plate. Parameters like radii of curvature, aspect ratio, ply orientation and boundary conditions are investigated to understand their effect on dynamic behavior of such a structure. In addition, multi-bay structures of such geometry with different stacking order are also taken into account. The composite frame structures are also modeled and simulated via ANSYS to verify the accuracy of the present study.

피에조콘 시험의 유한요소 해석 II (Finite Element Analysis of Piezocone Test II)

  • 김대규;김낙경
    • 한국지반공학회논문집
    • /
    • 제16권4호
    • /
    • pp.191-199
    • /
    • 2000
  • 본 연구에서는 피에조콘 시험의 유한요소해석을 수행하였다. 이를 위하여 점탄소성 bounding surface 모델, 가상일의 방정식(virtual work equation) 및 theory of mixtures를 Updated Lagrangian reference frame에서 formulation하였다. 결과적으로 구성된 유한요소 formulation을 컴퓨터 프로그래밍 하였으며 유한요소해석에서 얻은 콘 저항치, 과잉간극수압 및 간극수압소산 등의 결과를 실험치와 비교 분석하였으며 피에조콘 주변의 응력, 변형율 및 과잉간극수압의 contour를 유한요소해석에서 구하여 이를 고찰하였다. 비등방성 및 점성이 추가된 구성모델을 사용함으로서 응력의 비등방성 및 관입속도를 효과적으로 simulation할 수 있었다. 유한요소 Formulation 과정은 'I' 결과는 'II'에서 설명된다.

  • PDF

The finite element model research of the pre-twisted thin-walled beam

  • Chen, Chang Hong;Zhu, Yan Fei;Yao, Yao;Huang, Ying
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.389-402
    • /
    • 2016
  • Based on the traditional mechanical model of thin-walled straight beam, the paper makes analysis and research on the pre-twisted thin-walled beam finite element numerical model. Firstly, based on the geometric deformation differential relationship, the Saint-Venant warping strain of pre-twisted thin-walled beam is deduced. According to the traditional thin-walled straight beam finite element mechanical model, the finite element stiffness matrix considering the Saint-Venant warping deformations is established. At the same time, the paper establishes the element stiffness matrix of the pre-twisted thin-walled beam based on the classic Vlasov Theory. Finally, by calculating the pre-twisted beam with elliptical section and I cross section and contrasting three-dimensional solid finite element using ANSYS, the comparison analysis results show that pre-twisted thin-walled beam element stiffness matrix has good accuracy.

A refined finite element for first-order plate and shell analysis

  • Han, Sung-Cheon;Kanok-Nukulchai, Worsak;Lee, Won-Hong
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.191-213
    • /
    • 2011
  • This paper presents an improved 8-node shell element for the analysis of plates and shells. The finite element, based on a refined first-order shear deformation theory, is further improved by the combined use of assumed natural strain method. We analyze the influence of the shell element with the different patterns of sampling points for interpolating different components of strains. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Further, a refined first-order shear deformation theory, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. Numerical examples demonstrate that the present element perform better in comparison with other shell elements.