• Title/Summary/Keyword: finite element software

Search Result 1,165, Processing Time 0.03 seconds

FEA for RC Beams Partially Flexural Reinforced with CFRP Sheets (CFRP 시트로 부분 휨 보강된 철근콘크리트 보의 유한요소해석)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Byeong Cheol;Kim, Jaehwan;Jung, Kyu-San
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2020
  • A CFRP sheet has been applied as a structural reinforcement in the field, and various studies are conducted to evaluate the effect of CFRP sheets on reinforced concrete. Although many experiments were performed from previous studies, there are still limitations to analyze structural behaviors with various parameters in experiments directly. This study shows the FEA on structural behaviors of RC beams reinforced with CFRP sheets using ABAQUS software. To simulate debonding failure of CFRP sheets which is a major failure mode of RC beam with CFRP sheets, a cohesive element was applied between the bottom surface of RC beam and CFRP sheets. Both quasi-static method and 2-D symmetric FE model technique were performed to solve nonlinear problems. Results obtained from the FE models show good agreements with experimental results. It was found that reinforcement level of CFRP sheets is closely related to structural behavior of reinforced concrete including maximum strength, initial stiffness and deflection at failure. Also, as over-reinforcement of CFRP sheets could give rise to the brittle failure of RCstructure using CFRP sheets, an appropriate measure should be required when installing CFRP sheets in the structure.

A Study on the Stress Distribution of Tooth/Implant Connected with Konus Telescope Denture Using 3-Dimensional Finite Element Method (이중관으로 연결된 자연치와 임플랜트의 악골 내응력분포에 관한 3차원 유한요소분석)

  • Lee, Su-Ok;Choi, Dae-Gyun;Kwon, Kung-Rock;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.381-395
    • /
    • 2008
  • Purpoose: For decades dental implants have been used widely in the field of prosthetic dentistry. However there is confusion when establishing treatment plans in cases where some teeth are remained but an insufficient number of implants can be used due to limited anatomical status and ecomomical problems. Many clinicians have tried to connect natural teeth and implants, and it still has controversy. But, there have been few studies on mechanical analysis of connecting natural teeth and implants with konus telescopic removable partial dentures. The purpose of this study was to analyze the stress distribution of prosthesis, abutment and alveolar bone when teeth and implants were connected with the konus telescopic denture, by means of 3-dimensional finite element analysis. Material and methods: The assumption of this study was that there were 2 mandibular canine (11 mm in length, 4 mm in diameter) and 2 implants(10 mm in length, 4 mm in diameter) which are located in the second premolar region. The mandible, teeth, implants, abutments, and connectors are modeled, and analyzed with the commercial software, ANSYS Version 8.1(Swanson, Inc., USA). The control group used implants instead of natural teeth. 21038 elements, 23544 nodes were used in experimental group and 107595 elements, 21963 nodes were used in control group, Stress distribution was evaluated under 150 N vertical load on 3 experimental conditions - between teeth and implants (Load case 1), posterior to implants (Load case 2), between natural teeth (Load case 3). Results: 1. In all load cases, higher von mises stress value was observed in the experimental group. 2. Maximum von miss stress observed in all load cases and all locations were as follows ; a. 929.44 Mpa in the experimental group, 640.044 Mpa in the control group in outer crown and connector - The experimental group showed 1.45 times high value compared with the control group. b. 145,051 Mpa in the experimental group, 142.338 Mpa in the control group in abutment - The experimental group showed 1.02times high value compared with the control group. c. 32.489 Mpa in the experimental group, 25.765 Mpa in the control group in alveolar bone - The experimental group showed 1.26times higher value compared with the control group. 3. All maximum von mises stress was observed in load case 2, and maxim von mises stress in alveolar bone was 32.489 Mpa at which implant failure cannot occur. 4. If maximum von mises stress is compared between two groups, the value of the experimental group is 1.02 times higher than the control group in abutment, 1.26 times higher than the control group in alveolar bone. Conclusion: If natural teeth and implants are connected with the konus telescopic denture, maximum stress will be similar in abutment, 1.26 times higher in alveolar bone than the control group. With this result, there may be possible to make to avoid konus telescopic dentures where natural teeth and implants exist together.

Thickness Optimization for Spar Cap of Composite Tidal Current Turbine Blade using SQP Method (SQP법을 사용한 복합재 조류력 발전용 블레이드의 스파 캡에 대한 두께 최적화)

  • Cha, Myung-Chan;Kim, Sang-Woo;Jeong, Min-Soo;Lee, In;Yoo, Seung-Jae;Park, Cheon-Jin
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.207-212
    • /
    • 2013
  • In this study, the thickness optimization for uni-directional (UD) glass fiber reinforced polymer (GFRP) laminates of the spar cap of composite tidal blades was performed under the tip deflection constrains. The spar cap was composed of GFRP composites and carbon fiber reinforced polymer (CFRP) composites. The stress distributions in the blade as well as its material costs for the optimized results were additionally investigated. The optimized thickness was obtained by interacting a sequential quadratic programming (SQP) algorithm and an ABAQUS software to calculate an objective function. It was confirmed that the thickness of UD GFRP increased with a decrease of the restrained tip deflection when a thickness of UD CFRP laminates was constrained to 9 mm. The weight of the optimized spar-cap increased up to 96.2% while the maximum longitudinal tensile stress decreased up to 24.6%. The thickness of UD GFRP laminates increased with a decrease of the thickness of UD CFRP laminates when the tip deflection was constrained to 126.83 mm. The weight increased up to 40.1%, but the material cost decreased up to 16.97%. Finally, the relationships among the weight, internal tensile stress, and material costs were presented based on the optimized thicknesses of the spar cap.

Isogeometric Analysis of Mindlin Plate Structures Using Commercial CAD Codes (상용 CAD와 연계한 후판 구조의 아이소-지오메트릭 해석)

  • Lee, Seung-Wook;Koo, Bon-Yong;Yoon, Min-Ho;Lee, Jae-Ok;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.329-335
    • /
    • 2011
  • The finite element method (FEM) has been used for various fields like mathematics and engineering. However, the FEM has a difficulty in describing the geometric shape exactly due to its property of piecewise linear discretization. Recently, however, a so-called isogeometric analysis method that uses the non-uniform rational B-spline(NURBS) basis function has been developed. The NURBS can be used to describe the geometry exactly and play a role of basis functions for the response analysis. Nevertheless, constructing the NURBS basis functions in analysis is as costly as a meshing process in the FEM. Since the isogeometric method shares geometric data with CAD, it is possible to intactly import the model data from commercial CAD tools. In this paper, we use the Rhinoceros 3D software to create CAD models and export in the form of STEP file. The information of knot vectors and control points in the NURBS is utilized in the isogeometric analysis. Through some numerical examples, the accuracy of isogeometric method is compared with that of FEM. Also, the efficiency of the isogeometric method that includes the CAD and CAE in a unified framework is verified.

Grouting diffusion mechanism in an oblique crack in rock masses considering temporal and spatial variation of viscosity of fast-curing grouts

  • Huang, Shuling;Pei, Qitao;Ding, Xiuli;Zhang, Yuting;Liu, Dengxue;He, Jun;Bian, Kang
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.151-163
    • /
    • 2020
  • Grouting method is an effective way of reinforcing cracked rock masses and plugging water gushing. Current grouting diffusion models are generally developed for horizontal cracks, which is contradictory to the fact that the crack generally occurs in rock masses with irregular spatial distribution characteristics in real underground environments. To solve this problem, this study selected a cement-sodium silicate slurry (C-S slurry) generally used in engineering as a fast-curing grouting material and regarded the C-S slurry as a Bingham fluid with time-varying viscosity for analysis. Based on the theory of fluid mechanics, and by simultaneously considering the deadweight of slurry and characteristics of non-uniform spatial distribution of viscosity of fast-curing grouts, a theoretical model of slurry diffusion in an oblique crack in rock masses at constant grouting rate was established. Moreover, the viscosity and pressure distribution equations in the slurry diffusion zone were deduced, thus quantifying the relationship between grouting pressure, grouting time, and slurry diffusion distance. On this basis, by using a 3-d finite element program in multi-field coupled software Comsol, the numerical simulation results were compared with theoretical calculation values, further verifying the effectiveness of the theoretical model. In addition, through the analysis of two engineering case studies, the theoretical calculations and measured slurry diffusion radius were compared, to evaluate the application effects of the model in engineering practice. Finally, by using the established theoretical model, the influence of cracking in rock masses on the diffusion characteristics of slurry was analysed. The results demonstrate that the inclination angle of the crack in rock masses and azimuth angle of slurry diffusion affect slurry diffusion characteristics. More attention should be paid to the actual grouting process. The results can provide references for determining grouting parameters of fast-curing grouts in engineering practice.

Analysis of Behavior on GCP Composite Ground Considering Loading and Foundation Conditions (하중 및 기초조건에 따른 GCP 복합지반의 거동분석)

  • Kim, Gyeong-Eop;Park, Kyung-Ho;Kim, Dae-Hyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.127-137
    • /
    • 2018
  • Gravel Compaction Pile (hereinafter referred to as GCP) is a ground improvement technique by packing crushed stones on fragile clay ground, pressing it, and forming stakes on the foundation. Although many researchers have analyzed stress behavior of GCP composite ground on domestic GCP technique using laboratory experiment and field experiment, analyses of stress behavior according to the difference of stiffness of mat foundation loaded on the upper foundation of GCP composite ground have not been done actively. Therefore, this study aimed to identify the stress concentration ratio in accordance with the difference of basis stiffness by interpreting figures. To perform this, replacement ratio was changed and modelled using ABAQUS, software for finite element analysis and analyzed the stress concentration ratio, amounts of settlement, and maximum amounts of horizontal displacement of composite ground in accordance with the difference of stiffness. An analysis showed that the stress concentration ratio of rigid foundation was highly assessed than unloading of flexible foundation in case of unloading, while amounts of settlement under flexible unloading condition were slightly higher than under rigid condition. This indicates that the characteristic of stress behavior on the different stiffness of upper foundation needs to be clarified. In addition, the maximum horizontal displacement was generated in a constant level regardless of the difference of stiffness.

Analytical and experimental study on the quality improvement of 2 cavity injection-molded LCD frame (2 캐비티 LCD 사출품의 품질향상에 관한 해석 및 실험적 연구)

  • Son, Jae-Hwan;Jang, Eun-Sil;Han, Chang-Woo;Son, Jae-Yong;Lee, Young-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3815-3821
    • /
    • 2012
  • The LCD frame is an important part which supports the BLU of medium/large sized TFT-LCD. To produce it efficiently, it is necessary to achieve the molding process improvement from 1 cavity to 2 cavity system. Because 2 cavity mold is compact and its hot-runner zone is broadened, it is difficult to control the temperature on the mold. In this study, injection molding analysis on the frame in 2 cavity process with FEA(Finite Element Analysis) software is carried out to estimate its quality. The calculated injection molding pressures and maximum deflection in 1 and 2 cavity processes are 41.13 MPa and 1.62 mm, 40.49 MPa and 1.66 mm respectively. The measured maximum flexure load and surface roughness of the left and right frame of 2 cavities are 209 N and 0.08 ${\mu}m$, 193 N and 0.10 ${\mu}m$ while those in 1 cavity are 140 N and 0.13 ${\mu}m$. Thermal image shows that the maximum standard deviation of the temperature on left and right side of 2 cavity mold is $1.23^{\circ}C$. The simulation and measurement results show that the quality of the frame in 2 cavity injection molding process as a whole is not worse than that of 1 cavity system. But maximum flexure loads of the frame in 2 cavity process are far greater than that in 1 cavity process.

Parametric Study on Buckling Behavior of Longitudinally Stiffened Curved Panels by Closed-section Ribs (폐단면리브로 보강된 곡판의 국부판좌굴에 관한 변수해석적 연구)

  • Andico, Arriane Nicole P.;Kwak, Jae-Young;Choi, Byung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.714-721
    • /
    • 2018
  • In this study, we investigate a design technology intended to radically increase the buckling strength of vertically curved panels. Recent studies proposed a buckling strength formula which properly reflects the effect on the local plate buckling strength of flat plates when they are stiffened by closed section ribs. Herein, we attempted to quantitatively evaluate this effect on curved panels and to reveal the correlations with the design parameters. The commercial finite element software, ABAQUS, was used to build a three dimensional numerical model and numerical parametric studies were conducted to evaluate the variation of the buckling strength. In the case of flat panels, the local buckling strength of stiffened curved panels increases proportionally with increasing rotational stiffness of the closed-section ribs. After attaining a limiting value, an obvious tendency was found that the local buckling strength of the stiffened curved panel would converge towards a fixed value when the panels are supported along both sides. The parametric studies performed using the influential design parameters confirmed that the estimated partially-restrained curved panel strength is well correlated with the proposed formula.

Optimum Design of Cross Section Lateral Damper Oil Seals for High Speed Railway Vehicle (고속 철도 차량 횡댐퍼 오일 씰의 형상 단면 최적설계)

  • Hwang, Ji-Hwan;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.579-584
    • /
    • 2017
  • The damper oil seal of a high-speed railway vehicle is made from nitrile butadiene rubber (NBR) in order to prevent lubricant from leaking into the damper and to stop harmful contaminants from entering the external environment while in service. Oil leakage through the seal primarily occurs from fatigue failure of the damper. Cumulative damage of the seal occurs due to the contact force between the rod and the rubber during movement due to track irregularities and cants, among other factors. Thus, the design of the oil seal should minimize the maximum principal strain at weak points. In this study, the optimal cross section of the damper oil seal was found using the multi-island genetic algorithm method to improve the durability of the damper. The optimal shape of the oil seal was derived using process automation and design optimization software. Nonlinear material properties for finite element analysis (FEA) of the rubber were determined by Marlow's model. The nonlinear FEA confirmed that the maximum principal strain at the oil leakage point was decreased 24% between the initial design and the optimum design.

The fabrication of microwave circulator using polycrystalline $Y_{2.4}Ca_{0.3}Sn_{0.3}Fe_{5-x}Al_xO_{12}$ garnets (다결정 $Y_{2.4}Ca_{0.3}Sn_{0.3}Fe_{5-x}Al_xO_{12}$ 가네트 자성체를 이용한 마이크로파대 서큘레이터 구현)

  • 박정래;김태홍;김명수;한진우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2573-2584
    • /
    • 1997
  • In this paper, Ca, Sn substitute YIC(Yttrium Iron Garnet) ceramics were fabricated with Al substitutions in Fe sites. The strip-line circulator was designed and the properties of fabricated ciculator were measured. When the electric, magnetic and microwave properties were measured in Ca, Sn substituted YIG with Al subsititions, the relative permittivity and perfmeability in microwave frequencies were 15.623 and 0.972, repectively. For $Y_{2.4}Ca_{0.3}Sn_{0.3}Fe_{5-x}Al_xO_{12}$ garnet ceramics sintered at $1450^{\circ}C$, the ferrimagnetic resonance line width $\Delta{H}$) of 42 Oe and the saturation magnetization of 487 G were measured at 10 GHz. The strip-line circulator was simulated with 3-D FEM(Finite Element Method) software and designed to have insertion loss of 0.8dB, return loss of 25dB, isolation of 35dB at the center frequency of 1.9GHz. The fabricated strition loss of 0.8B, reture loss of 25dB, isolation of 35dB at the center frequency of 1.9GHz. The fabricated strip-line junction circulator using above YIG ceramics had insertion loss of 0.869dB, return loss of 26.955dB, isolation of 44.409dB at the center frequency of 1.9GHz.

  • PDF