• 제목/요약/키워드: finite element numerical analysis

검색결과 4,330건 처리시간 0.029초

Energy flow finite element analysis of general Mindlin plate structures coupled at arbitrary angles

  • Park, Young-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.435-447
    • /
    • 2019
  • Energy Flow Finite Element Analysis (EFFEA) is a promising tool for predicting dynamic energetics of complicated structures at high frequencies. In this paper, the Energy Flow Finite Element (EFFE) formulation of complicated Mindlin plates was newly developed to improve the accuracy of prediction of the dynamic characteristics in the high frequency. Wave transmission analysis was performed for all waves in complicated Mindlin plates. Advanced Energy Flow Analysis System (AEFAS), an exclusive EFFEA software, was implemented using $MATLAB^{(R)}$. To verify the general power transfer relationship derived, wave transmission analysis of coupled semi-infinite Mindlin plates was performed. For numerical verification of EFFE formulation derived and EFFEA software developed, numerical analyses were performed for various cases where coupled Mindlin plates were excited by a harmonic point force. Energy flow finite element solutions for coupled Mindlin plates were compared with the energy flow solutions in the various conditions.

유한요소법에 의한 항만 정온도의 수치모의 (The Numerical Simulation of Harbor Calmness by Finite Element Method)

  • 김남형;허영택
    • 한국해양공학회지
    • /
    • 제16권1호
    • /
    • pp.22-26
    • /
    • 2002
  • In this paper, a finite element method is applied to the numerical calculation of the harbor calmness. The mild stop equation as the basic equation is used. The key of this model is that the bottom friction and boundary absorption are imposed. A numerical result is presented and compared with the results obtained from the other numerical analysis. These results are in very well agreement. This method calculating the calmness can be broadly utilized making the new design of harbor and fishing port in the future.

준해석적 비선형 설계민감도를 위한 개선된 변위하중법 (Augmented Displacement Load Method for Nonlinear Semi-analytical Design Sensitivity Analysis)

  • 이민욱;유정훈;이태희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.492-497
    • /
    • 2004
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.

  • PDF

Finite element model updating of in-filled RC frames with low strength concrete using ambient vibration test

  • Arslan, Mehmet Emin;Durmus, Ahmet
    • Earthquakes and Structures
    • /
    • 제5권1호
    • /
    • pp.111-127
    • /
    • 2013
  • This paper describes effects of infill walls on behavior of RC frame with low strength, including numerical modeling, modal testing and finite-element model updating. For this purpose full scaled, one bay and one story RC frame is produced and tested for plane and brick in-filled conditions. Ambient-vibration testis applied to identify dynamic characteristics under natural excitations. Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are used to obtain experimental dynamic characteristics. A numerical modal analysis is performed on the developed two-dimensional finite element model of the frames using SAP2000 software to provide numerical frequencies and mode shapes. Dynamic characteristics obtained by numerical and experimental are compared with each other and finite element model of the frames are updated by changing some uncertain modeling parameters such as material properties and boundary conditions to reduce the differences between the results. At the end of the study, maximum differences in the natural frequencies are reduced on average from 34% to 9% and a good agreement is found between numerical and experimental dynamic characteristics after finite-element model updating. In addition, it is seen material properties are more effective parameters in the finite element model updating of plane frame. However, for brick in-filled frame changes in boundary conditions determine the model updating process.

모터싸이클 헬멧의 충격 해석 (Impact Analysis of Motorcycle Helmet)

  • 태후타이;김승억
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.573-578
    • /
    • 2008
  • Finite element analysis of impact response of a motorcycle helmet is presented in this paper. The finite element LS-DYNA3D code is used to simulate the impact response of the helmet including of plastic shell, foam liner, and magnesium headform. Since the maximum accelerations at center of gravity of the headform obtained by numerical analysis and experiment agree well, the numerical simulation is proved to be valid.

  • PDF

Efficient geometric nonlinear analyses of circular plate bending problems

  • Duan, Mei
    • Structural Engineering and Mechanics
    • /
    • 제20권4호
    • /
    • pp.405-420
    • /
    • 2005
  • In this paper, a hybrid/mixed nonlinear shell element is developed in polar coordinate system based on Hellinger/Reissner variational principle and the large-deflection theory of plate. A numerical solution scheme is formulated using the hybrid/mixed finite element method (HMFEM), in which the nodal values of bending moments and the deflection are the unknown discrete parameters. Stability of the present element is studied. The large-deflection analyses are performed for simple supported and clamped circular plates under uniformly distributed and concentrated loads using HMFEM and the traditional displacement finite element method. A parametric study is also conducted in the research. The accuracy of the shell element is investigated using numerical computations. Comparisons of numerical solutions are made with theoretical results, finite element analysis and the available numerical results. Excellent agreements are shown.

콘크리트의 변형률 국소화 및 진행성 파괴에 관한 연구 (Study on Strain Localization and Progressive Failure of Concrete)

  • 송하원;김형운;우승민
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.181-192
    • /
    • 1999
  • The progressive failure following strain localization in concrete can be analyzed effectively using finite element modeling of fracture process zone of concrete with a finite element embedded discontinuity. In this study, a finite element with embedded discontinuous line is utilized for the analysis of progressive failure in concrete. The finite element with embedded discontinuity is a kind of discrete crack element, but the difficulties in discrete crack approach such as remeshing or adding new nodes along with crack growth can be avoided. Using a discontinuous shape function for this element, the displacement discontinuity is embedded within an element and its constitutive equation is modeled from the modeling of fracture process zone. The element stiffness matrix is derived and its dual mapping technique for numerical integration is employed. Then, a finite element analysis program with employed algorithms is developed and failure analysis results using developed finite element program are verified through the comparison with experimental data and other analysis results.

해석해를 이용한 유한 요소 해석법 (Finite Element Analysis Using an Analytical Solution)

  • 허영우;임장근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.458-463
    • /
    • 2000
  • The mechanical structures generally have discontinuous parts such as the cracks, notches and holes owing to various reasons. In this paper, in order to analyze effectively these singularity problems using the finite element method, a mixed analysis method which an analytical solution and finite element solutions are simultaneously used is newly proposed. As the analytical solution is used in the singularity region and the finite element solutions are used in the remaining regions except this singular zone, this analysis method reasonably provides for the numerical solution of a singularity problem. Through various numerical examples, it is shown that the proposed analysis method is very convenient and gives comparatively accurate solution.

  • PDF

Strong formulation finite element method for arbitrarily shaped laminated plates - Part II. Numerical analysis

  • Fantuzzi, Nicholas;Tornabene, Francesco
    • Advances in aircraft and spacecraft science
    • /
    • 제1권2호
    • /
    • pp.145-175
    • /
    • 2014
  • The results of a series of numerical experiments are presented to verify some of the important developments made in the first part of this paper. Firstly, the static solution of an algebraic system obtained through Strong Formulation Finite Element Method (SFEM) is presented. Secondly, the stress and strain recovery procedure is descripted for the present technique. It will be clear that the present approach is suitable for any strong formulation finite element methodology, due to the presented general approach based on the unknown displacements and on the elasticity equations. Thirdly, the numerical solutions for some classical and other numerical results found in literature are exposed. Finally, an arbitrarily shaped composite plate is solved and good agreement is observed for all the presented cases.

항복응력과 미끄럼현상을 고려한 분말사출성형 충전공정의 유한요소해석 (Finite Element Analysis of Powder Injection Molding Filling Process Including Yield Stress and Slip Phenomena)

  • 박주배;권태헌
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1465-1477
    • /
    • 1993
  • 본 연구에서는 분말혼합체의 특성인 항복응력을 포함한 Generalized Newtonian Fluid의 구성 방정식을 도입하고 미끄럼현상을 고려한 신소재의 사출성형 충전과정 해석용 CAE(computer aided engineering)시스템을 개발하였다. 수치모사를 위한 수치해석방법으로는, 유한요소법(finite element method)과 유한차분법(finite difference method)을 함께 사용하였다. 유한요소법과 검사체적법(control volume technique) 을 병용하여 유동의 진행을 수치모사 하였으며, 유한차분법을 사용하여 온도분포를 계산하였다.