• Title/Summary/Keyword: finite element analysis software

Search Result 937, Processing Time 0.032 seconds

Development of a Fatigue Analysis Software System (피로해석시스템 개발)

  • Choi, B.I.;Lee, H.J.;Han, S.W.;Kim, J.Y.;Hwang, K.H.;Kang, J.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.120-125
    • /
    • 2001
  • A general purpose fatigue analysis software to predict fatigue lives of mechanical components and structures was developed. This software has some characteristic features including functions of searching weak regions on the free surface in order to reduce computing time significantly, a database of fatigue properties for various materials. and an expert system which can assist any users to get more proper results. This software can be used in the environment consists of commercial finite element packages. Using the software developed fatigue analyses for a SAE keyhole specimen and an automobile knuckle were carried out. It was observed that the results were agree well with those from commercial packages.

  • PDF

Analysis of offshore pipeline laid on 3D seabed configuration by Abaqus

  • Moghaddam, Ali Shaghaghi;Mohammadnia, Saeid;Sagharichiha, Mohammad
    • Ocean Systems Engineering
    • /
    • v.5 no.1
    • /
    • pp.31-40
    • /
    • 2015
  • Three dimensional (3D) non-linear finite element analysis of offshore pipeline is investigated in this work with the help of general purpose software Abaqus. The general algorithm for the finite element approach is introduced. The 3D seabed mesh, limited to a corridor along the pipeline, is extracted from survey data via Fledermous software. Moreover soil bearing capacity and coefficient of frictions, obtained from the field survey report, and are introduced into the finite element model through the interaction module. For a case of study, a 32inch pipeline with API 5L X65 material grade subjected to high pressure and high temperature loading is investigated in more details.

A study on voided-area analysis and remaining life prediction using the finite element method for pavement structures (유한요소기법을 이용한 동공해석과 공용수명 예측기법 연구)

  • Lee, Junkyu;Lee, Sangyum;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.131-136
    • /
    • 2016
  • OBJECTIVES : The objective of this research is to determine the integrity of pavement structures for areas where voids exist. Furthermore, we conducted the study of voided-area analysis and remaining life prediction for pavement structures using finite element method. METHODS : To determine the remaining life of the existing voided areas under asphalt concrete pavements, field and falling weight deflectometer (FWD) tests were conducted. Comparison methods were used to have better accuracy in the finite element method (FEM) analysis compared to the measured surface displacements due to the loaded trucks. In addition, the modeled FEM used in this study was compared with well-known software programs. RESULTS : The results show that a good agreement on the analyzed and measured displacements can be obtained through comparisons of the surface displacement due to loaded trucks. Furthermore, the modeled FEM program was compared with the available pavement-structure software programs, resulting in the same values of tensile strains in terms of the thickness of asphalt concrete layers. CONCLUSIONS : The study, which is related to voided-area analysis and remaining life prediction using FEM for pavement structures, was successfully conducted based on the comparison between our methods and the sinkhole grade used in Japan.

The Strength Analysis of Passenger Car Seat Frame (승용차 시트프레임의 강도해석)

  • 임종명;장인식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.205-212
    • /
    • 2003
  • This paper may provide a basic design data for the safer car seat mechanism and the quality of the material used by finding out the passenger's dynamic behavior when protected by seat belt during collision. A computer simulation with finite element method is used to accomplish this objective. At first, a detailed geometric model of the seat is constructed using CAD program. The formation of a finite element from a geometric data of the seat is carried out using Hyper-Mesh that is the commercial software for mesh generation and post processing. In addition to seat modeling, the finite element model of seat belt and dummy is formed using the same software. Rear impact analysis is accomplished using Pam-Crash with crash pulse. The part of the recliner and right frame is under big stress in rear crash analysis because the acceleration force is exerted on the back of the seat by dummy. The stress condition of the part of the bracket is checked as well because it is considered as an important variable on the seat design. Front impact model which including dummy and seal belt is analyzed. A Part of anchor buckle of seat frame has high stress distribution because of retraction force due to forward motion of dummy at the moment of collision. On the basis of the analysis result, remodeling and reanalysis works had been repeatedly done until a satisfactory result is obtained.

Composite material optimization for heavy duty chassis by finite element analysis

  • Ufuk, Recep;Ereke, Murat
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.41-59
    • /
    • 2018
  • In the study, investigation of fiber- reinforced composite materials that can be an alternative to conventional steel was performed by finite element analysis with the help of software. Steel and composite materials have been studied on a four axle truck chassis model. Three-dimensional finite element model was created with software, and then analyzes were performed. The analyses were performed for static and dynamic/fatigue cases. Fatigue cases are formed with the help of design spectra model and fatigue analyses were performed as static analyses with this design spectra. First, analyses were performed for steel and after that optimization analyses were made for the AS4-PEEK carbon fiber composite and Eglass-Epoxy fiber composite materials. Optimization of composite material analyzes include determining the total laminate thickness, thickness of each ply, orientation of each ply and ply stacking sequence. Analyzes were made according to macro mechanical properties of composite, micromechanics case has not been considered. Improvements in weight reduction up to %50 provided at the end of the composite optimization analyzes with satisfying stiffness performance of chassis. Fatigue strength of the composite structure depends on various factors such as, fiber orientation, ply thickness, ply stack sequence, fiber ductility, ductility of the matrix, loading angle. Therefore, the accuracy of theoretical calculations and analyzes should be correlated by testing.

Analysis and Design of Powder Metallurgy Process using Finite Element Method (유한요소법을 이용한 분말야금 공정 해석 및 설계)

  • Kwon Y. S.;Lee M. C.;Chung S. T.;Chung S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.241-244
    • /
    • 2005
  • Though the history of finite element analysis in field of powder metallurgy is not short, industrial engineer is still being dependent on the trial and error approach based on engineer's experience in selecting process conditions. This problem is mainly due to the difficulty in establishing models for the behavior of a powder compact during compaction and sintering as well as finding material parameters for the models and the absence of CAE software with which industrial engineer can easily investigate the effect of process conditions on the quality of product. Therefore, we established very simple and cheap procedure to find material parameters for powder compaction behavior and implemented it in self-developed commercial CAE software for powder metallurgy, PMsolver. Basically, the development strategy of PMsolver lies on simplification and convenience so as for industrial engineers to use it with least training. Using PMsolver, optimal process conditions were found for some geometry and powders. Prior to process condition design, the accuracy of finite element analysis was verified.

  • PDF

Techniques of Automatic Finite Element Mesh Generation on Surface Primitives (원시곡면 위의 유한요소망 자동생성 기법)

  • 이재영
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.189-202
    • /
    • 1996
  • Complex geometric shapes can be defined simply and efficiently by combining and operating various surface primitives. These primitives and their intersection curves are used in finite element mesh generation to form an easy and intuitive procedure for finite element modelling of curved surfaces. This paper proposes techniques of automatic mesh generation on surface primitives with arbitrarily shaped boundaries and control curves, which may be created by surface to surface intersection. A method of automatic mesh generation on plane, which was previously developed by the author, has been modified for application to the surface mesh generation. Owing to the mesh generation-wise differences between planes and surfaces, the surfaces should be transformed into conceptual plane so that the modified plane mesh generation method can be applied. Surface development, mapping and mesh reconstruction are the key techniques suggested in this paper. The selection of the technique to apply can be determined automatically on the basis of the developability, existence of singularity and other characteristics of the surfaces on which the mesh is to be generated. The suggested techniques were implemented into parts of mesh generation functions of the finite element software, MacTran. Their validity and practicality were manifested by the actual use of this software.

  • PDF

Nonlinear finite element analysis of loading transferred from column to socket base

  • Anil, Ozgur;Uyaroglu, Burak
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.475-492
    • /
    • 2013
  • Since the beginning of the 90 s, depending on the growth of the industrial sector in Turkey, factory constructions have been increased. The cost of precast concrete buildings is lower than the steel ones for this reason the precast structural systems are used more. Precast concrete structural elements are mostly as strong as not to have damage in the earthquake but weakness of connections between elements causes unexpected damages of structure during earthquake. When looking at the previous researches, it can be seen that there is a lack of studies about socket type base connections although there were many experimental and analytical studies about the connections of precast structural elements. The aim of this study is to investigate the stress transfer mechanism between column and the socket base wall with finite element method. For the finite element analysis ANSYS software was used. A finite element model was created which is the simulation of experimental research executed by Canha et al. (2009) under vertical and horizontal forces. Results of experimental research and finite element analysis were compared to create a successful simulation of experimental program. After determining the acceptable parameters, models of socket bases were created. Model dimensions were chosen according to square section column sizes 400, 450, 500, 550 and 600 mm which were mostly used in industrial buildings. As a result of this study, stress distribution at center section of the socket base models were observed and it is found that stress distribution affects triangular at the half of socket bottom and top.

Finite Element Analysis of Sheet Metal Forming Process Using Shell Element (쉘 요소를 이용한 박판성형공정의 유한요소해석)

  • Jung Dong-Won;Ko Hyung-Hoon;Lee Chan-Ho;You Ho-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.152-158
    • /
    • 2006
  • The AutoForm previously used the membrane element and it accomplished sheet metal forming analysis. The membrane analysis has been widely applied to various sheet metal forming processes because of its time effectiveness. However, it is well-known that the membrane analysis can not provide correct information for the processes which have considerable bending effects. In this research experimental results were compared with the analysis results obtained by using the shell element which is applied newly in the AutoForm commercial software. The shell element is a compromise element between continuum element and membrane element. The Finite element method by using shell element is the most efficient numerical method. From this research, it is known that FEA by using shell element can predict accurately the problems happened in actual experimental auto-body panel.

The Finite Element Analysis and the Optimum Geometric Design of Linear Motor

  • Lee Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.73-77
    • /
    • 2005
  • Linear motor has been considered to be the most suitable electric machine for linear control with high speed and high precision. Thrust of linear motor is one of the important factors to specify motor performance. Maximum thrust can be obtained by increasing the magnitude of current in conductor and is relative to the sizes of conductor and magnet. However, the magnitude of current and the size of conductor have an effect on temperature of linear motor. Therefore, it is practically important to find optimum design that can effectively maximize thrust of linear motor within limited range of temperature. Finite element analysis was applied to calculate thrust and numerical solutions were compared with experiments. The temperature of the conductor was calculated from the experimentally determined thermal resistance. The ADPL of ANSYS was used for the optimum design process, which is commercial finite element analysis software. Design variables and constraints were chosen based on manufacturing feasibility and existing products. As a result, it is shown that temperature of linear motor plays an important role in determining optimum design.