• 제목/요약/키워드: finite element analysis methodology

검색결과 401건 처리시간 0.026초

원자로 압력용기 원주방향 용접부의 잔류응력 해석 (Analysis of Residual Stress on Circumferential Weldment of Reactor Pressure Vessel)

  • 김종성;진태은
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.430-434
    • /
    • 2001
  • To perform the integrity evaluation of RPV more realistically, it is necessary to evaluate the metallurgical microstructure and residual stress considering more real phenomena such as multi-pass welding process and PWHT. Accordingly, firstly, this paper proposes the integrated assessment methodology systematically developed for residual stress on weldment of RPV by using thermodynamics, diffusion theory, finite element method and validation experiment. Also, the residual stress on circumferential weldment of reactor pressure vessel is calculated considering multi-pass welding process by the commercial finite element package, ABAQUS.

  • PDF

Compression field modeling of confined concrete

  • Montoya, E.;Vecchio, F.J.;Sheikh, S.A.
    • Structural Engineering and Mechanics
    • /
    • 제12권3호
    • /
    • pp.231-248
    • /
    • 2001
  • The three-dimensional behavior of confined concrete was investigated, including strength enhancement due to triaxial compressive stresses, lateral expansion, compression softening, cover spalling and post-peak ductility. A finite element program based on a nonlinear elasticity methodology was employed to evaluate the ability to model triaxial behavior of reinforced concrete (RC) by combining constitutive models proposed by several researchers. The capability of compression field based models to reproduce the softening behavior of lightly cracked confined concrete was also investigated. Data from tested specimens were used to evaluate the validity of the formulations. Good agreement with the experimental results was obtained.

Optimization Shape of Variable-Capacitance Micromotor Using Seeker Optimization Algorithm

  • Ketabi, Abbas;Navardi, Mohammad Javad
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.212-220
    • /
    • 2012
  • In the current paper, the optimization shape of a polysilicon variable-capacitance micromotor (VCM) was determined using the seeker optimization algorithm (SOA). The optimum goal of the algorithm was to find the maximum torque value and minimum ripple torque by varying the geometrical parameters. The optimization process was performed using a combination of SOA and the finite-element method (FEM). The fitness value was calculated via FEM analysis using COMSOL3.4, and SOA was realized by MATLAB7.4. The proposed method was applied to a VCM with eight and six poles at the stator and rotor, respectively. For comparison, this optimization was also performed using the genetic algorithm. The results show that the optimized micromotor using SOA had a higher torque value and lower torque ripple, indicating the validity of this methodology for VCM design.

ANALYSIS AND COMPUTATIONS OF OPTIMAL AND FEEDBACK CONTROL PROBLEMS FOR NAVIER-STOKES EQUATIONS

  • Lee, Hyung-Chun
    • 대한수학회지
    • /
    • 제34권4호
    • /
    • pp.841-857
    • /
    • 1997
  • We present analysis and some computational methods for boundary optimal and feedback control problems for Navier-Stokes equations. We use one example to illustrate our methodology and ideas which are applicable to general control problems for Navier-Stokes equations. First, we discuss the existence of optimal solutions and derive an optimality system of equations from which an optimal solution may be computed. Then we present a gradient type iterative method. Finally, we present some numerical results.

  • PDF

결함해석에 기초한 배관용접부 수명평가 (Flaw Analysis Based Life Assessment of Welded Tubular Joint)

  • 이형일;한태수;정재헌
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1331-1342
    • /
    • 2000
  • In power generation systems a variety of structural components typically operate at high temperature and pressure. Therefore a life assessment methodology accounting for gradual creep fracture is increasingly needed for these components. The most critical defects in such structure are generally found in the form of semi-elliptical surface cracks in the welded tubular joints. Therefore the analysis of a semi-elliptical surface crack in a plate or a shell is an important problem in engineering fracture mechanics. On this background, via shell/line-spring finite element analyses of such surface cracks in the welded T and L joints under various loadings, we investigate J-integral along the crack front We first develop T and L joints auto mesh generation program providing ABAQUS input file composed of shell/line-spring finite elements. We then further develop a T and L joints life assessment program based on the experimental creep crack growth law and auto mesh generation program in a graphical user interface format Finally the remaining life of T and L joints for various analytical parameters are assessed using the developed life assessment program.

초공동(超空洞) 유동 문제의 형상 설계민감도 해석 (Shape Design Sensitivity Analysis of Supercavitating Flow Problem)

  • 최주호;곽현구
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1320-1327
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in supercavitating flow problem. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in potential flow problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design in potential flow problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-to-use features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem is chosen to illustrate the efficiency of the proposed methodology. Implementation issues for the sensitivity analysis and optimization procedure are also addressed in this flow problem.

3차원 노즐로드 보수적 하중 조건 결정을 위한 하중 부호 결정 방법론 (Methodology to Determine Sign for the Most Conservative 3-D Nozzle Loads)

  • 유경찬;서기완;송현석;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.140-145
    • /
    • 2023
  • When performing stress analysis for a nozzle in nuclear power plants, the nozzle loads should be determined conservatively. Existing stress analysis report of 3-D nozzle loads in nuclear power plants often provide only load magnitude not the sign (direction). Since calculated stress distribution depends on load direction, determining critical load directions for conservative stress analysis is crucial. In this study, an efficient method for determining critical load directions in nozzle loads is proposed. In the proposed method, stresses are firstly calculated using elastic finite element (FE) analysis for the uni-axial load in each direction. Then stress distributions for the multi-axial loads are analytically calculated using the principle of superposition. The calculated stress values are verified by comparing with FE analysis results under multi-axial loading. By using this method, the complex task of determining conservative load directions can be simplified.

헤밍 공정에서의 미세 결함 평가 및 예측에 관한 연구 (Study on the Evaluation and Prediction of Micro-Defects in the Hemming Process)

  • 정헌철;임재규;김형종
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.533-540
    • /
    • 2005
  • The hemming process, composed of flanging, pre-hemming and main hemming, is the last one of a series of forming processes conducted on the automotive panels, having greater influence on the outward appearance of cars rather than on their performance. The hem quality can be quantitatively defined by the hemming defects including turn-down/up, warp and roll-in/out. However, it is difficult to evaluate and predict the hem quality through an experimental measurement or a numerical calculation since the size of defects is very small. This study aims to precisely evaluate the hemming defects, especially turn-down and roll-in, through numerical and experimental approaches and to investigate the influence of process parameters on the hem quality, focused on how to simulate the same conditions as in the experiment by the finite element analysis (FEA). The FEA results on the turn-down and roll-in obtained from a model composed of the optimum-sized elements, including a spring element linked to the flanging pad, and given the double master contact condition between the inner and outer panels, had a good correlation with the experimental data. It is thought possible to make an early estimate of the hem quality in a practical automotive design by applying the methodology proposed in this study.

수치해석법을 활용한 압축부재 성능 해석의 가능성에 대한 연구 (The study on the possibility of performance analysis for the compressive member using the numerical method)

  • 김광철
    • 한국가구학회지
    • /
    • 제21권1호
    • /
    • pp.26-39
    • /
    • 2010
  • This is a leading study to replace the structural analysis methodology on the specific traditional joint by a numerical analysis. Tests were carried out to test the compressive methodologies with the numerical results. The Japanese larch was used as a sample. The Orthotropic property of wood was specifically considered for the finite element numerical analysis. Linear numerical analysis and non-linear numerical analysis for the BEAM element and the two SOLID elements of ANSYS were used to analyze the compressive performance. In addition, more finely divided elements were used to raise the accuracy of the numerical result. Finally, the statistically significant differences were tested between that of the analytical and numerical results. It could be concluded that the SOLID 64 element shows the most optimum result when the non-linear analysis with the more finely divided element was used. However, finely dividing of the element is a considerable time consuming process, and it is quite difficult to raise the accuracy of the non-linear numerical analysis. Therefore, if considering the vertical displacement to be of the only interest, the BEAM element is more efficient than the SOLID element because the BEAM element is reflected as a simple line, which is less time consuming and difficult in dividing the elements. But, the BEAM element cannot accurately model the knot as a strength defect factor which is an important property in the orthotropic property of wood. Therefore, the SOLID element should be used to model the strength defect factor, knot, as it can be efficiently applied on the structural size flexure member which could be more strongly effected by the knot. In addition, it is useful at times when the failure types of members are to be more closely investigated, as the SOLID element is able to examine the local stress distribution of the member. The conclusion drawn by this study is of the good concordance between analytical results and numerical results of compressive wood members, but how orthotropic properties should only be considered. The numerical analysis on the specific Korean traditional joints will be based on the current study results.

  • PDF

굽힘피로 하중을 받는 배관의 피로균열 발생수명 예측 (Crack Initiation Life Analysis in Notched Pipe Under Cyclic Bending Loads)

  • 곽상록;이준성;김영진;박윤원
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1528-1534
    • /
    • 2001
  • In order to improve Leak-Be(ore-Break methodology, more precisely the crack growth evaluation, a round robin analysis was proposed by the CEA Saclay. The aim of this analysis was to evaluate the crack initiation life, penetration life and shape of through wall crack under cyclic bending loads. The proposed round robin analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but the crack initiation cycle was higher than the experimental result.