• Title/Summary/Keyword: finite deformations

Search Result 442, Processing Time 0.024 seconds

A Study on Grid Effect and Applicability of Composite Reinforcement (그리드효과 및 복합보강재의 적용성에 관한 연구)

  • 김홍택;이형규;김승욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.95-104
    • /
    • 1999
  • In this study, laboratory pull-out tests and finite element modeling are carried out focused on the grid effects of geogrid and the analyses of friction characteristics associated with interaction behaviors of the composite reinforcement composed of geogrid with a superior function in tensile resistance and geotextile with sufficient drainage effects. In addition, drainage effects of the geotextile below geogrid are examined based on the analysis of finite difference numerical modeling. From the present investigation, it is concluded that the geosynthetic composite reinforcement in the weathered granite backfills may possibly be used to achieve effects on both a reduction of deformations and an increase of the tensile resistance, together with drainage effects due to the geotextile.

  • PDF

Geometrically nonlinear elastic analysis of space trusses

  • Tin-Loi, F.;Xia, S.H.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.4
    • /
    • pp.345-360
    • /
    • 1999
  • A general framework for the nonlinear geometric analysis of elastic space trusses is presented. Both total Lagrangian and finite incremental formulations are derived from the three key ingredients of statics, kinematics and constitutive law. Particular features of the general methodology include the preservation of static-kinematic duality through the concept of fictitious forces and deformations, and an exact description for arbitrarily large displacements, albeit small strain, that can be specialized to any order of geometrical nonlinearity. As for the numerical algorithm, we consider specifically the finite incremental case and suggest the use of a conventional, simple and flexible arc-length based method. Numerical examples are presented to illustrate and validate the accuracy of the approach.

Efficient Analysis of Piping Systems with Joint Deformation (접합부 변형을 고려한 파이프 설비의 효율적인 해석)

  • 이동근;송윤환;안경철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.50-55
    • /
    • 1989
  • Piping systems are composed of pipes with various thickness, diameter and length. Accurate analysis of a piping system requires a complicated three dimensional finite element model and a computer system with large memory size, while simplified models result in system response prediction with deteriorated accuracy. An efficient analysis model for piping systems is proposed in this study. The proposed model is developed by introducing a joint model which accounts for the behavior of a pipe connection. Pipes are represented by beam elements and the effect of local deformation of pipe connections are replaced by joint element deformations. The proposed model which is as simple and efficient as a beam model can be used to obtain piping system response with accuracy close to that of a finite element model.

  • PDF

Finite element analysis of welding processes (용접공정의 유한요소해석)

  • Choi, Kang-Hyouk;Kim, Ju-Wan;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.465-467
    • /
    • 2004
  • Finite element analysis of welding processes, which entail phase evolution, heat transfer and deformation, is considered in this paper. Attention focuses on numerical implementation of the thermo-elastic-plastic constitutive equation proposed by Leblond et al in consideration of the transformation plasticity. Based upon the multiplicative decomposition of deformation gradient, hyperelastic formulation is employed for efficient numerical integration, and the algorithmic consistent moduli for elastic-plastic deformations including transformation plasticity are obtained in the closed form. The convergence behavior of the present implementation is demonstrated via a couple of numerical examples. Several locking phenomena removed by Solid-shell element.

  • PDF

Structural Vibration Analysis of Helicopter Search Light Considering Aerodynamic Buffet Load (공력 Buffet 하증을 고려한 헬리콥터 탐색등의 구조진동해석)

  • Kim, Yo-Han;Kim, Dong-Man;Kim, Dong-Hyun;Choi, Hui-Ju;Park, Yong-Suk;Kim, jong-Gun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.175-179
    • /
    • 2008
  • In this study, computational structural vibration analysis of helicopter search light exposing unsteady buffet load have been conducted using combined advanced numerical methods. Unsteady CFD method based on Navier-Stokes equations is used to predict viscous buffet load due to flow separation effects. Full three-dimensional finite element model is constructed in order to conduct static and structural dynamic analyses of the search light model for two different typical flight speeds. Also, the correct performance of the search light can be physically estimated to examine the actual lighting area considering the effects of structural deformations.

  • PDF

Finite Element Analysis of the Composite Box Girder (합성상형의 유한요소 해석)

  • 이정기;조진구;박근수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.3
    • /
    • pp.145-152
    • /
    • 1987
  • This paper suggests a method for the analysis of box girders which are subject to the membrane and the plate bending actions, Moreover, the method is applied to the box girders under distributed loads which have various geometrical types of cross sections and are made out of different materials. The approach is based on the finite element technique in which the structure is considered to be a spatial assemblage of flat plate elements and the deformations of the plates are to be approximated with 9-noded parabolic isoparametric elements. The results are summarized as follows. 1.In all models, the larger the widths of top flange inside of web are, the larger the vertical deflections are. 2.The maximum transverse and longitudinal moments in the composite box girders are judged to be larger than those in the RC box girders. 3.The transverse and the longitudinal moments in top flange of composite box. girders are larger than those in that of the RC box girders. 4.The transverse and longitudinal moments in web and bottom flange of the composite box girders are estimated to be very small in compare to those in web and bottom flange of the RC box girders.

  • PDF

Characterizing the geotechnical properties of natural, Israeli, partially cemented sands

  • Frydman, Sam
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.323-337
    • /
    • 2011
  • Israel's coastal region consists, mainly, of Pleistocene and Holocene sands with varying degrees of calcareous cementation, known locally as "kurkar". Previous studies of these materials emphasized the difficulty in their geotechnical characterization, due to their extreme variability. Consequently, it is difficult to estimate construction stability, displacements and deformations on, or within these soils. It is suggested that SPT and Menard pressuremeter tests may be used to characterize the properties of these materials. Values of elastic modulus obtained from pressuremeter tests may be used for displacement analyses at different strain levels, while accounting for the geometric dimensions (length/diameter ratio) of the test probe. A relationship was obtained between pressuremeter modulus and SPT blow count, consistent with published data for footing settlements on granular soils. Cohesion values, for a known friction angle, are estimated, by comparing field pressuremeter curves to curves from numerical (finite element or finite difference) analyses. The material analyzed in the paper is shown to be strain-softening, with the initial cohesion degrading to zero on development of plastic shear strains.

Generalized beam-column finite element on two-parameter elastic foundation

  • Morfidis, K.;Avramidis, I.E.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.519-537
    • /
    • 2005
  • A new generalized Bernoulli/Timoshenko beam-column element on a two-parameter elastic foundation is presented herein. This element is based on the exact solution of the differential equation which describes the deflection of the axially loaded beam resting on a two-parameter elastic foundation, and can take into account shear deformations, semi - rigid connections, and rigid offsets. The equations of equilibrium are formulated for the deformed configuration, so as to account for axial force effects. Apart from the stiffness matrix, load vectors for uniform load and non-uniform temperature variation are also formulated. The efficiency and usefulness of the new element in reinforced concrete or steel structures analysis is demonstrated by two examples.

Investigation on Interaction between Tunneling and Groundwater (터널시공과 지하수의 상호작용 고찰)

  • Yoo, Chung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.415-424
    • /
    • 2004
  • This paper presents the effect of groundwater on tunneling performance. The interaction between the tunneling and groundwater was examined using a 3D stress-pore pressure coupled finite-element analysis, The results of the 3D coupled analysis were then compared with those of a total stress analysis. Examined items included pore pressures around lining and lining forces. Also examined include face displacements and ground surface movements, The results indicated that the interaction between the tunneling and ground water significantly increases the lining forces and ground deformations, and that the effect of ground water on tunneling can only be captured through a fully coupled analysis, Implementations of the findings from this study arc discussed in great detail.

  • PDF

A Study on the Effects of the Design Parameters and Sealing Mechanism of the Exhaust Gas in Engine Exhaust System (엔진 배기계의 배기가스 누설 메카니즘과 설계인자들의 영향에 관한 연구)

  • Choi, B.L.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.37-42
    • /
    • 2010
  • This paper deals with the sealing mechanism of the gasket component and the effects of design parameters for the exhaust manifold. The finite element model includes hot-end exhaust system and a simplified gasket model supplied by ABAQUS software. The mechanical behaviors of bead and body of a gasket are measured after several times of cyclic loads by gasket supplier. From the finite element analysis due to the cyclic thermal loads, the flange of exhaust manifold shows thermal expansion and contraction in longitudinal direction as well as convex and concave deformations with respect to the engine cylinder head. And, the contact pressures of the gasket beads suddenly changes by normal deformation of inlet flanges. Therefore, the magnitudes of contact pressures could be used to determine the sealing characteristics of the exhaust gas in the exhaust system. The distributions of contact pressures in gasket bead lines shows a good agreement with the engine test results.