• Title/Summary/Keyword: finite 1-type

Search Result 1,039, Processing Time 0.024 seconds

Numerical Modeling of One-Dimensional Longitudinal Dispersion Equation using Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 이용한 1차원 종확산방정식의 수치모형)

  • 서일원;김대근
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.155-166
    • /
    • 1994
  • Various Eulerian-Lagrangian numerical models for the one-dimensional longitudinal dispersion equation are studied comparatively. In the model studied, the transport equation is decoupled into two component parts by the operator-splitting approach ; one part governing adveciton and the other dispersion. The advection equation has been solved using the method of characteristics following fluid particles along the characteristic line and the results are interpolated onto an Eulerian grid on which the dispersion equation is solved by Crank-Nicholson type finite difference method. In solving the advection equation, various interpolation schemes are tested. Among those, Hermite interpolation polynomials are superior to Lagrange interpolation polynomials in reducing dissipation and dispersion errors in the simulation.

  • PDF

Adaptive lasso in sparse vector autoregressive models (Adaptive lasso를 이용한 희박벡터자기회귀모형에서의 변수 선택)

  • Lee, Sl Gi;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.27-39
    • /
    • 2016
  • This paper considers variable selection in the sparse vector autoregressive (sVAR) model where sparsity comes from setting small coefficients to exact zeros. In the estimation perspective, Davis et al. (2015) showed that the lasso type of regularization method is successful because it provides a simultaneous variable selection and parameter estimation even for time series data. However, their simulations study reports that the regular lasso overestimates the number of non-zero coefficients, hence its finite sample performance needs improvements. In this article, we show that the adaptive lasso significantly improves the performance where the adaptive lasso finds the sparsity patterns superior to the regular lasso. Some tuning parameter selections in the adaptive lasso are also discussed from the simulations study.

Analysis of the Magnetic Force and Torque of a Rotatory Two-phase Transverse Flux Machine (회전형 이상 횡자속형 전동기에서 발생하는 자기력 및 토크 해석)

  • Park, Nam-Ki;Chang, Jung-Hwan;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.33-40
    • /
    • 2007
  • Rotatory two-phase transverse flux machine(TFM) is a relatively new type of motor with high power density, high torque, and low speed in comparison to conventional electrical motors. However, it has some shortcomings,.i.e. complex construction and high possibility of the magnetically induced nitration due to its inherent structure. This Paper investigates the characteristics of the magnetic force and the torque in the rotatory two-phase TFM by using the 3-D finite element method and the spectral analysis. This research shows that the average torque decreases and that the torque ripple increases as the phase delay increases. It also shows that the unbalanced magnetic force is one of the dominant excitation forces in this machine. And it proposes a new topology of rotatory two-phase TFM to eliminate the unbalanced magnetic force.

The Analysis for Flow Circulation System in HANARO Flow Simulation Facility (하나로 유동 모의 설비의 유체순환계통 해석)

  • Park, Yong-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.1 s.22
    • /
    • pp.30-35
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. HANARO flow simulation facility is being developed for the endurance test of reactivity control units for extended life time and the verification of structural integrity of those experimental equipments prior to loading in the HANARO. This facility is composed of three major parts; a half-core structure assembly, a flow circulation system and a support system. The flow circulation system is composed of a circulation pump, a core flow piping, a core bypass flow piping and instruments. The system is to be filled with de-mineralized water and the flow should be met the design requirements to simulate a similar flow characteristics in the core channel of the half-core structure assembly to the HANARO. This paper, therefore, presents an analytical analysis to study the flow behavior of the system. Computational flow analysis has been performed for the verification of system pressure variation through the three-dimensional analysis program with the standard $k-{\epsilon}$ turbulence model and for the verification of the structural piping integrity through the finite element method. According to the analysis results, it could be said that the design requirements and the structural piping integrity of the flow circulation system are satisfied.

Detection of Manufacturing Defects in Stiffness of CFTA Girder using Static Loading (정적 시험을 사용한 CFTA거더의 제조시 강성 결함 탐색)

  • Kim, Doo-Kie;Alfahdawi, Nathem;Cui, Jintao;Park, Kyung-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.109-116
    • /
    • 2012
  • This paper presents a study on the nonlinear behavior of an innovative bridge girder made from concrete-filled and tied tubular steel arch (CFTA) under static loading. Manufacturing of the CFTA girder may have defects which may highly affect the symmetry and performance of the structure. A simple method is proposed by using stiffness extracted from static test data to detect manufacturing defects of the CFTA girder. A three-dimensional finite element model was used in the numerical analysis in order to verify the method. The proposed method was experimentally validated through static tests of the CFTA girder. The application of the proposed method showed that it is effective in identifying invisible manufacturing defects of the CFTA girder, especially for mass production of a standard type in the factory.

On the Monlinear Analysis of Ship's Structures -Ultimate Strength Analysis of Plates and Stiffened Plates under Compressive Load- (선체구조물(선체구조물)에 관한 비선형(비선형) 해석연구(해석연구) -압축하중하(壓縮荷重下)의 평판(平板)과 보강판(補剛板)의 극한강도해석(極限强度解析)-)

  • J.D.,Koo;J.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.1
    • /
    • pp.11-20
    • /
    • 1983
  • In this paper elastic-plastic large deflection analysis of ship structural members, plates, stiffened plates and cylindrical shallow shell, are performed by the finite element method. And for the consideration of the yielded propagation through the depth of the member, the layered element approach is employed. The present method is justified by comparing its results with those of experiment and others. As results, the nonlinear behavior and the ultimate strength curves are shown, which can be used in the design of the plates and the stiffened plates under compression, and the applicability to the shell structures is suggested. The analysis results are as followings. (1) The results of the approximate equations as well as those of buckling analysis may not guarantee precisely the safety of the structures in some cases and the optimum in other cases. Therefore they may not show the design criteria for the optimal design. (2) As the initial deflection increases, its effects on the ultimate strength of the structure generally increases, and the ultimate load, therefore, decreases. (3) This approach can be applied to the shell type structures. (4) The present method can be applied to the various structures composed of plate and beam members, for example, plates with hole and the stiffened plates with hole stiffened by spigot, doubler and/or stiffener, for the optimal design.

  • PDF

Analysis of Thrust Characteristics of Multi-winding LDM (다권선형 LDM의 추력특성 해석)

  • Maeng, In-Jae;Baek, Soo-Hyun;Kim, Yong;Yoon, Shin-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.57-64
    • /
    • 2000
  • In this paper, to achieve the constant thrust force of the double side moving-magnet type LDM, the new armature winding of the LDM was proposed so as to restrain the saturation of the center yoke without increasing the mass of LDM. According to analyzing the magnetic flux distribution throughout the air-gap of the LDM, the magnet and winding width (1:0.84) was determined. The 2D finite element analysis was performed for force analysis on air-gap.

  • PDF

Finite Element Analysis of Internal Winding Faults in PAD-Type Distribution Transformer (유한요소법을 이용한 배전용 PAD변압기 권선고장시의 전자계해석)

  • Ha, Jung-Woo;Kim, Chul;Kim, Han-Deul;Shin, Pan-Seok;Lee, Byung-Sung;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.108-110
    • /
    • 2005
  • 배전용 변압기의 경우 고장 발생시 직접적인 수용가 측에 피해가 발생되며, 변압기 폭발시 인명 피해까지 우려되고 있다. 변압기 내부 고장으로 절연유가 분출될 경우가 가장 심각한 고장으로 이러한 피해를 방지하기 위해서는 내부 고장에 대한 정확한 해석이 필요하다. 본 연구에서 변압기 권선내에서 발생되는 고장을 유한요소 전자계해석 프로그램(FLUX2D)을 이용하여 해석하였다. 50kVA, 13200/230(V) 단강 변압기의 권선고장시 전자계해석, 1차측 권선고장(turn-to-earth)과 2차측 권선고장(turn-to-turn)을 모의하여 해석하였다. 또한, 권선 내부 고장 및 2차측 단락시 누설자속분포, 1차 및 2차측 고장전류, 권선간의 힘의분포 등을 해석하였다. 분석결과는 변압기의 절연설계 및 단락기계력에 대한 프레임 구조 설계를 위한 자료로 활용된다.

  • PDF

Effect of cable stiffness on a cable-stayed bridge

  • Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.27-38
    • /
    • 1999
  • Cables are used in many applications such as cable-stayed bridges, suspension bridges, transmission lines, telephone lines, etc. Generally, the linear relationship is inadequate to present the behavior of cable structure. In finite element analysis, cables have always been modeled as truss elements. For these types of model, the nonlinear behavior of cables has been always ignored. In order to investigate the importance of the nonlinear effect on the structural system, the effect of cable stiffness has been studied. The nonlinear behavior of cable is due to its sag. Therefore, the cable pretension provides a large portion of the inherent stiffness. Since a cable-stayed bridge has numerous degrees of freedom, analytical methods at present are not convenient to solve this type of structures but numerical methods may be feasible. It is necessary to provide a different and more representative analytical model in order to present the effect of cable stiffness on cable-stayed bridges in numerical analysis. The characteristics of cable deformation have also been well addressed. A formulation of modified modulus of elasticity has been proposed using a numerical parametric study. In order to investigate realistic bridges, a cable-stayed bridge having the geometry similar to that of Quincy Bayview Bridge is considered. The numerical results indicate that the characteristics of the cable stiffness are strongly nonlinear. It also significantly affects the structural behaviors of cable-stayed bridge systems.

Crash analysis of military aircraft on nuclear containment

  • Sadique, M.R.;Iqbal, M.A.;Bhargava, P.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.73-87
    • /
    • 2015
  • In case of aircraft impact on nuclear containment structures, the initial kinetic energy of the aircraft is transferred and absorbed by the outer containment, may causing either complete or partial failure of containment structure. In the present study safety analysis of BWR Mark III type containment has been performed. The total height of containment is 67 m. It has a circular wall with monolithic dome of 21m diameter. Crash analysis has been performed for fighter jet Phantom F4. A normal hit at the crown of containment dome has been considered. Numerical simulations have been carried out using finite element code ABAQUS/Explicit. Concrete Damage Plasticity model have been incorporated to simulate the behaviour of concrete at high strain rate, while Johnson-Cook elasto-visco model of ductile metals have been used for steel reinforcement. Maximum deformation in the containment building has reported as 33.35 mm against crash of Phantom F4. Deformations in concrete and reinforcements have been localised to the impact region. Moreover, no significant global damage has been observed in structure. It may be concluded from the present study that at higher velocity of aircraft perforation of the structure may happen.