• Title/Summary/Keyword: finite 1-type

Search Result 1,033, Processing Time 0.023 seconds

A Study on Investigation for Effectiveness of Natural Minerals with Silica-Component as Admixture for Concrete

  • 김화중
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.201-214
    • /
    • 1994
  • The fracture process zone in concrete is a region ahead of a traction-free crack, in which two major mechanisms, microcracking and bridging, play important roles. The toughness due to bridging is dominant compared to toughness induced by microcracking, so that the bridging is dominani: mechanism governing the fracture process of concrete. Fracture mechanics does work for concrete provided that the fracture process zone is being considered, so that the development of model for the fracture process zone is most important to describe fracture phenomena in concrete. In this paper the bridging zone, which is a part of extended rnacrocrack with stresses transmitted by aggregates in concrete, is modelled by a Dugdale-Barenblatt type model with linear tension-softening curve. Two finite element techniques are shown for the analysis of progressive cracking in concrete based on the discrete crack approach: one with crack element, the other without crack element. The advantage of the technique with crack element is that it dees not need to update the mesh topology to follow the progressive cracking. Numerical results by the techniques are demonstrated.

Design of Robust and Non-fragile $H_{\infty}$ Kalman-type Filter for System with Parameter Uncertainties: PLMI Approach (변수 불확실성을 가지는 시스템에 대한 견실비약성 $H_{\infty}$ 칼만형필터 설계: PLMI 접근법)

  • Kim, Joon Ki;Yang, Seung Hyeop;Bang, Kyung Ho;Park, Hong Bae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.181-186
    • /
    • 2012
  • In this paper, we describe the synthesis of robust and non-fragile Kalman filter design for a class of uncertain linear system with polytopic uncertainties and filter gain variations. The sufficient condition of filter existence, the design method of robust non-fragile filter, and the measure of non-fragility in filter are presented via LMIs(Linear Matrix Inequality) technique. And the obtained sufficient condition can be represented as PLMIs(parameterized linear matrix inequalities) that is, coefficients of LMIs are functions of a parameter confined to a compact set. Since PLMIs generate infinite LMIs, we use relaxation technique, find the finite solution for robust non-fragile filter, and show that the resulting filter guarantees the asymptotic stability with parameter uncertainties and filter fragility. Finally, a numerical example will be shown.

Investigation of the Regression Analysis Method for a Quantitative Evaluation of Implant Crestal Bone Stresses (회귀분석법에 의한 임플란트 경부골 응력의 정량적 분석에 대한 연구)

  • Kim, Woo-Shik;Jo, Kwang-Hun;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.3
    • /
    • pp.299-310
    • /
    • 2008
  • In this study, the regression analysis method was tested for the estimation of peak stress at stress concentration area in the cervical bone. Submerge type EZ plus implant (Megagen. Daegu, Korea), 4.1 mm in cervical diameter and 9.6 mm in endosseous length, were axisymmetrically modelled together with surrounding alveolar bone of which the width was 10 mm. Vertical force of 100 N was applied to a head of crown above 8.5 mm from the outer surface of the cortical bone. Four different mesh models were composed of differently sized elements in vicinity of sharp corners, and they include 6 stress monitoring points that are located in the same geometrical points regardless of the differences in the meshes. Primary consideration was given to the stresses in the cortical bone surrounding the implant neck. The results showed that virtually all the stresses were concentrated in the cortical bone regardless of mesh designs. The peak stresses were successfully calculated by a regression analysis in a stable manner, as far as the mesh is designed to represent the acute gradient of stresses near the sharp corner.

An experimental and numerical study on temperature gradient and thermal stress of CFST truss girders under solar radiation

  • Peng, Guihan;Nakamura, Shozo;Zhu, Xinqun;Wu, Qingxiong;Wang, Hailiang
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.605-616
    • /
    • 2017
  • Concrete filled steel tubular (CFST) composite girder is a new type of structures for bridge constructions. The existing design codes cannot be used to predict the thermal stress in the CFST truss girder structures under solar radiation. This study is to develop the temperature gradient curves for predicting thermal stress of the structure based on field and laboratory monitoring data. An in-field testing had been carried out on Ganhaizi Bridge for over two months. Thermal couples were installed at the cross section of the CFST truss girder and the continuous data was collected every 30 minutes. A typical temperature gradient mode was then extracted by comparing temperature distributions at different times. To further verify the temperature gradient mode and investigate the evolution of temperature fields, an outdoor experiment was conducted on a 1:8 scale bridge model, which was installed with both thermal couples and strain gauges. The main factors including solar radiation and ambient temperature on the different positions were studied. Laboratory results were consistent with that from the in-field data and temperature gradient curves were obtained from the in-field and laboratory data. The relationship between the strain difference at top and bottom surfaces of the concrete deck and its corresponding temperature change was also obtained and a method based on curve fitting was proposed to predict the thermal strain under elevated temperature. The thermal stress model for CFST composite girder was derived. By the proposed model, the thermal stress was obtained from the temperature gradient curves. The results using the proposed model were agreed well with that by finite element modelling.

Barrel Rifling Shape Optimization by Using Design of Experiment Approach (실험계획법을 적용한 포의 강선 형상최적설계)

  • Kang, Dae-Oh;Woo, Yoon-Hwan;Cha, Ki-Up
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.897-904
    • /
    • 2012
  • The rifling design problem has continuous-type shape variables and an integral number of riflings. In addition, it requires considerable time for analysis because its behavior should be described by a nonlinear finite element model (FEM). Therefore, this study presents an efficient design process for rifling based on a design of experiment (DOE) approach. First, Bose's orthogonal array is used to represent 25 runs for four design variables including three shape variables and one integer variable. Then, nonlinear FE analyses are performed. Next, to minimize the bullet resistance without affecting the bullet velocity and bullet rotational angle immediately before a bullet leaves the gun barrel, a what-if design is performed. In the proposed what-if design, a functional including the design objective and constraints is constructed and effect analysis is performed by using the functional. It is found that the new design obtained from the what-if design shows better results than the current one.

The effects of beam-column connections on behavior of buckling-restrained braced frames

  • Hadianfard, Mohammad Ali;Eskandari, Fateme;JavidSharifi, Behtash
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.309-318
    • /
    • 2018
  • Buckling Restrained Braced (BRB) frames have been widely used as an efficient seismic load resisting system in recent years mostly due to their symmetric and stable hysteretic behavior and significant energy dissipation capacity. In this study, to provide a better understanding of the behavior of BRB frames with various beam-column connections, a numerical study using non-linear finite element (FE) analysis is conducted. All models are implemented in the Abaqus software package following an explicit formulation. Initially, the results of the FE model are verified with experimental data. Then, diverse beam-column connections are modeled for the sake of comparison from the shear capacity, energy dissipation and frame hysteresis behavior points of view until appropriate performance is assessed. The considered connections are divided into three different categories: (1) simple beam-column connections including connection by web angle and connection by seat angle; (2) semi-rigid connection including connection by web and seat angles; and (3) rigid beam-column connections by upper-lower beam plates and beam connections with web and flange splices. Results of the non-linear FE analyses show that these types of beam-column connections have little effect on the maximum story drift and shear capacity of BRB frames. However, the connection type has a significant effect on the amount of energy dissipation and hysteresis behavior of BRB frames. Also, changes in length and thickness of the angles in simple and semi-rigid connections and changes in length and thickness of plates in rigid connections have slight effects (less than 4%) on the overall frame behavior.

Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior

  • Song Ki-Won;Kim Yong-Seok;Chang Gap-Shik
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.129-138
    • /
    • 2006
  • Using a strain-controlled rheometer, the steady shear flow properties of aqueous xanthan gum solutions of different concentrations were measured over a wide range of shear rates. In this article, both the shear rate and concentration dependencies of steady shear flow behavior are reported from the experimentally obtained data. The viscous behavior is quantitatively discussed using a well-known power law type flow equation with a special emphasis on its importance in industrial processing and actual usage. In addition, several inelastic-viscoplastic flow models including a yield stress parameter are employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models is also examined in detail. Finally, the elastic nature is explained with a brief comment on its practical significance. Main results obtained from this study can be summarized as follows: (1) Concentrated xanthan gum solutions exhibit a finite magnitude of yield stress. This may come from the fact that a large number of hydrogen bonds in the helix structure result in a stable configuration that can show a resistance to flow. (2) Concentrated xanthan gum solutions show a marked non-Newtonian shear-thinning behavior which is well described by a power law flow equation and may be interpreted in terms of the conformational status of the polymer molecules under the influence of shear flow. This rheological feature enhances sensory qualities in food, pharmaceutical, and cosmetic products and guarantees a high degree of mix ability, pumpability, and pourability during their processing and/or actual use. (3) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have equivalent ability to describe the steady shear flow behavior of concentrated xanthan gum solutions, whereas both the Bingham and Casson models do not give a good applicability. (4) Concentrated xanthan gum solutions exhibit a quite important elastic flow behavior which acts as a significant factor for many industrial applications such as food, pharmaceutical, and cosmetic manufacturing processes.

COMPARISONS OF PARALLEL PRECONDITIONERS FOR THE COMPUTATION OF SMALLEST GENERALIZED EIGENVALUE

  • Ma, Sang-Back;Jang, Ho-Jong;Cho, Jae-Young
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.305-316
    • /
    • 2003
  • Recently, an iterative algorithm for finding the interior eigenvalues of a definite matrix by CG-type method has been proposed. This method compares to the inverse power method. The given matrices A, and B are assumed to be large and sparse, and SPD( Symmetric Positive Definite) The CG scheme for the optimization of the Rayleigh quotient has been proven a very attractive and promising technique for large sparse eigenproblems for smallest eigenvalue. Also, it is very amenable to parallel computations, like the CG method for the linear systems. A proper choice of the preconditioner significantly improves the convergence of the CG scheme. But for parallel computations we need to find an efficient parallel preconditioner. Our candidates we ILU(0) in the wave-front order, ILU(0) in the multi-coloring order, Point-SSOR(Symmetric Successive Overrelaxation), and Multi-Color Block SSOR preconditioner. Wavefront order is a simple way to increase parallelism in the natural order, and Multi-coloring realizes a parallelism of order(N), where N is the order of the matrix. Another choice is the Multi-Color Block SSOR(Symmetric Successive OverRelaxation) preconditioning. Block SSOR is a symmetric preconditioner which is expected to minimize the interprocessor communication due to the blocking. We implemented the results on the CRAY-T3E with 128 nodes. The MPI (Message Passing Interface) library was adopted for the interprocessor communications. The test problem was drawn from the discretizations of partial differential equations by finite difference methods. The results show that for small number of processors Multi-Color ILU(0) has the best performance, while for large number of processors Multi-Color Block SSOR performs the best.

Evaluation of Impact Factor on Pipe-truss Bridges According to Driving Bimodal Tram (저상굴절차량의 주행에 따른 파이프트러스교의 충격계수 산정)

  • Kim, Hee-Ju;Jun, Myung-Il;Hwang, Won-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.45-52
    • /
    • 2010
  • This paper estimated the impact factor using the finite element program to confirm the dynamic behavior of new type of bridges constructed by introduction of new vehicles and compared the design criteria about the impact factor applied to domestic as well as each country. The study estimated effects of the impact factor according to pipe truss types modeled as respectively 34m, 44m, 54m and span length. The vehicle models are vehicle for bimodal tram of two axis and three axis which passes on actual bridge and dump truck model proposed by Park Young suk(1997). Each vehicle is estimated the impact factor according to velocity from 10 to 100(km/h) and examined. Also, the study investigated and compared the design regulation of domestic and a foreign country based on the impact factor on span center calculated in accordance with vehicle and span length.

The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.507-535
    • /
    • 2017
  • In the strong wind shutdown state, the blade position significantly affects the streaming behavior and stability performance of wind turbine towers. By selecting the 3M horizontal axis wind turbine independently developed by Nanjing University of Aeronautics and Astronautics as the research object, the CFD method was adopted to simulate the flow field of the tower-blade system at eight shutdown positions within a single rotation period of blades. The effectiveness of the simulation method was validated by comparing the simulation results with standard curves. In addition, the dynamic property, aerostatic response, buckling stability and ultimate bearing capacity of the wind turbine system at different shutdown positions were calculated by using the finite element method. On this basis, the influence regularity of blade shutdown position on the wind-induced response and stability performance of wind turbine systems was derived, with the most unfavorable working conditions of wind-induced buckling failure of this type of wind turbines concluded. The research results implied that within a rotation period of the wind turbine blade, when the blade completely overlaps the tower (Working condition 1), the aerodynamic performance of the system is the poorest while the aerostatic response is relatively small. Since the influence of the structure's geometrical nonlinearity on the system wind-induced response is small, the maximum displacement only has a discrepancy of 0.04. With the blade rotating clockwise, its wind-induced stability performance presents a variation tendency of first-increase-then-decrease. Under Working condition 3, the critical instability wind speed reaches its maximum value, while the critical instability wind speed under Working condition 6 is the smallest. At the same time, the coupling effect between tower and blade leads to a reverse effect which can significantly improve the ultimate bearing capacity of the system. With the reduction of the area of tower shielded by blades, this reverse effect becomes more obvious.