• Title/Summary/Keyword: finishing mill

Search Result 112, Processing Time 0.019 seconds

Investigation of Effect of Hot Rolling Oil of on Rolling with HSS Roll (고속도공구강롤을 적용한 열간유압연 사용특성 연구)

  • 유재희;황상무;김철희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.115-118
    • /
    • 1997
  • Recently, hot rolling oil lubrication technology is required to face with the new environments such as the rapid introduction of high wear resistent high speed steel roll the development of continuous hot rolling technology. In the hot strip mill, according to rolling and quality required conditions are constrict, Roll material of hot rolling finishing stand is changing Hi-Cr Roll to High Speed Steel [HSS] Roll. The problem of HSS Roll of roll force and strip scale defects are increasing in hot strip mill, So we have tested HSS Roll in hot rolling simulator as rolling condition, rolling speed, draft, hot oil concentration. To reduce roll force and prevent scale defects. We get some merit rolling force, rolling torque, roll wear reduction, roll and strip surface roughness and hot rolling critical oil concentration 0.4%. Finally we are going to investigate the effect of hot rolling oil of on rolling with HSS Roll.

  • PDF

Optimization of edger model to increase rolling yields in the plate mill (Edger 압연모델 최적화를 통한 후판압연 실수율 개선)

  • 천명식;이준정;문영훈
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.208-215
    • /
    • 1999
  • To increase rolling yields by minimizing trimming losses of hot-rolled plate, optimization logic for the edger model has been developed. The logic to determine optimum edging amount model has been formulated on the basis of actual production rolling data. In case of broadside rolling, the fish tail shape at the sides of plate was better for reducing the crop loss and this could be achieved when the edging amount of broadside rolling was increased. At a given broadside rolling ratio, methodology to determine optimum edging amount for the finish rolling which could minimize the width deviation of plate were systematically derived. Therefore, for a given broadside rolling condition and the permissible tolerance in width deviation of plate, it was possible to optimize the edging amount in finish rolling to maximize rolling yields. The application of optimization logic in this study increased rolling yields from approximately 10% to 30% at various longitudinal eding raitos.

  • PDF

Investigation of the Causes of Uncooled Region Induced at Top End in Wire Rolling Process (선재압연에서의 소재선단 미수냉부 발생원인 규명)

  • Son, Boong-Ho;Yoo, Jea-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2516-2518
    • /
    • 2000
  • In order to reduce the trimming loss for water cooling zone next to finishing block mill in wire rolling, the operational data related to the crop length control of uncooled region was acquired and analyzed. The time deviation of water cooling spray nozzles and the immoderate preset length of uncooled wire rod result in the excessive trimming loss. Therefore, the preset length of uncooled wire rod at each cooling zone are established. The test results of #3 wire rolling mill turned out to be good enough to be expected to increase the ratio of products about 0.15% and establish operational standards of cooling zone.

  • PDF

A Study on the Prediction for Rolling Force Using Radial Basis Function Network in Hot Rolling Mill (방사형기저함수망을 이용한 열간 사상압연의 압연하중 예측에 관한 연구)

  • 손준식;이덕만;김일수;최승갑
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.368-373
    • /
    • 2003
  • A major concern at present is the simultaneous control of transverse thickness profile and flatness in the finishing stages of hot rolling process. The mathematical modeling of hot rolling process has long been recognized to be a desirable approach to investigate rolling operating practice and the design of mill equipment to improve productivity and quality. However, many factors make the mathematical analysis of the rolling process very complex and time-consuming. In order to overcome these problems and to obtain an accurate rolling force, the predicted model of rolling force using neural networks has widely been employed. In this paper, Radial Basis Function Network(RBFN) is applied to improve the accuracy of rolling force prediction in hot rolling mill. In order to verify and analysis the performance of applied neural network, the comparison with the measured rolling force and the predicted results using two different neural networks - RBFN, MLP, has respectively been carried out. The results obtained using RBFN neural network are much more accurate those obtained the MLP.

  • PDF

A Study on the Prediction for Rolling Force Using Radial Basis Function Network in Hot Rolling Mill (방사형기저함수망을 이용한 열간 사상압연의 압연하중 예측에 관한 연구)

  • Son Joon-Sik;Lee Duk-Man;Kim Ill-Soo;Choi Seung-Gap
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.29-33
    • /
    • 2004
  • A major concern at present is the simultaneous control of transverse thickness profile and flatness in the finishing stages of hot rolling process. The mathematical modeling of hot rolling process has long been recognized to be a desirable approach to investigate rolling operating practice and the design of mill equipment to improve productivity and quality. However, many factors make the mathematical analysis of the rolling process very complex and time-consuming. In order to overcome these problems and to obtain an accurate rolling force, the predicted model of rolling force using neural networks has widely been employed. In this paper, Radial Basis Function Network(RBFN) is applied to improve the accuracy of rolling force prediction in hot rolling mill. In order to verify and analyze the performance of applied neural network the comparison with the measured rolling force and the predicted results using two different neural networks-RBFN, MLP, has respectively been carried out. The results obtained using RBFN neural network are much more accurate those obtained the MLP.

5-axis Machining of Impellers using Geometric Shape Information and a Vector Net (기하학적 형상정보와 벡터망을 이용한 임펠러의 5축가공)

  • Hwang, Jong-Dae;Yun, Il-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.63-70
    • /
    • 2020
  • Two rotational motions of the 5-axis machine tool maximize the degree of freedom of the tool axis vector, which improves tool accessibility; however, this lowers feed speed and rigidity, which impairs machining stability. In addition, cutting efficiency is lowered when compared with a flat end mill because typically, the ball-end mill is used when machining by rotational motion. This study increased cutting efficiency by using a corner radius flat end mill during impeller roughing. Furthermore, we proposed a fixed controlled machining of the rotary motion using geometric shape information to improve the feed speed and machining stability. Finally, we proposed a finishing tool path generation method using a vector net to increase the convenience and practicality of tool path generation. To verify its effectiveness, we compared the machining time, shape accuracy, and surface quality of the proposed method and an existing dedicated module.

A study on optimal cutting conditions of MCD or NCD coated ball end-mills for finishing (MCD 및 NCD 코팅 볼 엔드밀의 정삭가공에서의 최적절삭조건에 관한 연구)

  • Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.17-23
    • /
    • 2022
  • Recently, several studies are being conducted to achieve a curvature of 180° or more for the edge of the display glass. The thermocompression molding process is applied to the manufacture of curved glass, and high hardness G5 graphite is used as the mold material to withstand the impact applied to the mold. G5 graphite has high hardness and strong brittleness, which makes tool wear and surface damage easy during machining. Therefore, the demand for diamond-coated tools with good mechanical properties is increasing in the G5 machining field. In this study, the optimal cutting conditions and machinability of a nanodiamond (NCD) coated ball end mill being developed by a tool manufacturer were analyzed and evaluated. For this purpose, the same test was performed on the microdiamond (MCD) coated ball end mill and compared together. In summary, the machinability of MCD and NCD coated tools showed better cutting performance at a cutting speed of 282 m/min, a feed rate of 1,400 mm/min, and a radial depth of cut of 0.08 to 0.1 mm.

Measurement System of the Transverse Temperature Profile of Hot Rolled Strip (열간압연공정에서의 스트립 폭방향온도 모니터링시스템 개발)

  • Lee, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.197-201
    • /
    • 2001
  • Output and cost efficiency in the production of hot-rolled strip depend to a large content on the uniformity of geometric and mechanical properties over the length and width of the rolled end product. To ensure the homogeneous temperatures required for this during the rolling process a system to measure and evaluate the transverse temperature profile was developed and implemented in production. The systems used consist of temperature scanners and computers for measurement and data evaluation. The systems have been installed in Kwangyang hot strip mills, in the cases at the exit of the finishing train and at the entry of the coiler. They are used in production to determine the effect of the finishing train and the cooling zone on the technological properties of the hot rolled strip.

  • PDF

Looper-Tension Control of Strip Top-Tail Parts for Hot Rolling Mills (열간압연공정의 스트립 선미단부 루퍼-장력 제어)

  • Hwang, I-Cheol
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.24-29
    • /
    • 2015
  • This paper designs a looper-tension controller for strip top-tail parts in hot strip finishing mills. A three-degree linear model of the looper-tension system is derived by a Taylor's linearization method, where the actuator's dynamics are ignored because of their fast responses. A feedforward shaping controller for the strip top part and a feedforward model reference controller for the strip tail part are respectively designed, they are combined with an ILQ(Inverse Linear Quadratic optimal control) feedback controller for the strip middle part. It is shown from by a computer simulation that the proposed controller is very effective to the strip top-tail parts including the middle part.

A study on the surface roughness assessment of polished surfaces (연마 다듬질 가공면의 표면 미세형상 평가에 관한 연구)

  • 조남규;김현국;권기환;한창수;안유민;이성환;박균명
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.326-331
    • /
    • 2000
  • This paper describes the statistical analysis techniques for the surface roughness assessment of polished surfaces. In experiments, the polishing process of the sample surfaces which are manufactured by ball end mill is consist of two steps; the cusp removal process and the surface finishing process. For the cusp removal process, the criterion of cusp removal was established from the power spectrum analysis to assess the change of the cusp removal rate. For the finishing process, the surface was polished by the rotational CBN tool and vibration wood tool. And the surface quality of polished surface was assessed using the functional parameters based on the statistical values of surface profiles. Consequently, the surface finish performance of the polished surface using the vibration wood tool was improved.

  • PDF