• Title/Summary/Keyword: finishing mill

Search Result 112, Processing Time 0.022 seconds

A Dynamic Set-up Technique for High Accuracy set-up of Continuous Hot Strip Finishing Mill (열간 마무리압연 설정의 정도향상을 위한 동적 설정법)

  • 문영훈;이준정
    • Transactions of Materials Processing
    • /
    • v.5 no.3
    • /
    • pp.232-238
    • /
    • 1996
  • A dynamic mill set-up technique was developed to achieva a more precise roll gap set-up of the finishing mill stands for steel strip rolling. In the conventional mill set-up model the set-up values such as roll gap and roll speed are determined before the sheet bar reached the entry side of the finishing mill train and maintained constant until the strip top end passes through the last stand. In the way however a dynamic set-up logic that gives a way to adjust the roll gap value of the final mill stand for the strip ingoing from the ahead of the front stand was developed and attached to the existing set-up model. The roll gap modification is based on the analysis of the observation in the third stand of the finishing mill train. The dynamic set-up model was proved very effective for the more precise mill set-up and for operational stability in the hot strip finishing mill train.

  • PDF

Development of a Finishing-Mill Set Up Program for Calculating Pass Schedule In Mini Process (미니밀 마무리압연기의 Pass Schedule 설정 프로그램 개발)

  • 이호국;박해두;최갑춘
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03a
    • /
    • pp.101-109
    • /
    • 1996
  • Mini-mill process which is one of the new steel -marking technologies to be able to produce the hot rolled coils by thin slab caster of ISP(In-Line Strip Production) type, will be completed in the Kwangyang Steel Works of POSCO in August, 1996, SEt-Up Model of finishing mill which consists of 5 stands is the most basic and essential in mini-mill plant. Therefore, the simulation program of Finishing-mill Set-Up model were developed in this research , using new temeprature prediction model, roll gap model and rolling physical model. Using the developed FSU program , pass schedules to produce the strips with target strip thickness of 1.8mm, 2.0mm, 2.3mm, 2.7mm an d3.0mm were also determined respectively.

  • PDF

Predictions of Strip Temperatures for Finishing Mill of Gwangyang Hot Rolling Line $\#3$ (광양 3열연 사상압연에서의 스탠드간 판 온도 예측)

  • Kim H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.349-358
    • /
    • 2004
  • The strip temperature history of finishing mill process is one of the most important factors to stabilize the facilities and to achieve the better product quality including a better prediction of roll force etc. The ultimate goal of this study is to improve scientific understanding of the finishing mill process in the view of heat transfer science. Finishing mill cooling facilities of KwangYang $\#3$ hot rolling are introduced and heat transfer analyses from FET to FDT are particularly focused in this study Three major tasks are successfully achieved as follows: 1) The temperature Prediction Models are developed. 2) The average absolute error is found to be less then 10 Celsius degree (about $8.5^{\circ}C$). 3) Prediction rate (less then $\bar{+}20$) are $10.2\%$ improved $(80.1\;\rightarrow\;90.3\%)$.

  • PDF

Tension Control System for Hot Strip Mills (열간 압연 공정에서의 장력 제어시스템)

  • 박성한;안병준;황이철;홍신표;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.169-169
    • /
    • 2000
  • The modeling for the looper of a hot strip finishing mill to control the tension of the strip is presented. The looper is an arm pushing against the strip between stands in a tandem mill to keep the strip tension constant and to isolate the interactions of the adjacent stands. Tension is influenced by the difference in mass flow through the up stream and down-stream rolling stands. Tension is critical to strip quality, influencing width, gauge, and shape. This paper presents how looper angle and strip tension are controlled for a hot strip finishing mill.

  • PDF

Characteristic Analysis of Vibration in Finishing Mill (열연 사상압연기 진동 특성 분석에 관한 연구)

  • Shin, N.H.;Son, B.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.578-583
    • /
    • 2001
  • Chattering phenomenon is an abrupt relative vibration between the strip and rolls of rolling machine in working. It inevitably results from the progress of the degeneration in the mill facilities. This research was carried out in order to analyze the characteristic and find the cause of chatter mark in finishing mill and it was founded that major causes are facility character of driving part and special condition in case of excessive roll force.

  • PDF

Development of Technology for Setting Rolling Speed of Finishing Rolling Process in Hot Strip Mill (열연 마무리 압연공정 압연롤 회전속도 설정 기술 개발)

  • Hong, Seong-Cheol;Lee, Haiyoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.47-56
    • /
    • 2013
  • Rolling speed, roll gap, and cooling pattern in hot strip finishing mill process should be determined before inserting strip into roll. Such parameters are initially calculated by a mathematical set-up model. The technique to find adequate roll speed via a mathematical model has inherently limit because required working conditions are various and rolling process is nonlinear. To improve the accuracy of initial rolling speed for a finishing mill, this paper suggests a correction technology for initial rolling speed. The proposed method was implemented in hot strip mill process. As the results, the magnitude of width error in strip head-end part caused by excessive strip tension was decreased remarkably.

On the Full Stand Modeling and Tension Control for the Hot Strip Finishing Mill with PID Structure

  • Ahn, Byoung-Joon;Park, Ju-Yong;Chang, Yu-Shin;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1062-1073
    • /
    • 2004
  • We describe a looper controller design for a hot strip finishing mill in steel plants. The main function of the looper system is to balance the mass flow of the strip by accumulating material in the middle of the stands. Another function is to control the strip tension which influences the width of the strip. To ensure strip quality, it is very important to control the tension of the hot strip finishing mill. However, because there is a mutual interaction between the looper angle and the strip tension, it is difficult to control the looper system. Previous researches examined only the operation of a single stand. But it is not sufficient to examine the operation and effect of whole stands because the operation is wholly interdependent. In this paper, we present a full model of the hot strip finishing mill in order to more effectively control strip tension. We propose several control methods for the full-stand hot strip finishing mill, denoted as conventional PI, PI with cross gain, and coefficient diagram method (CDM) PID control. In the real plants, there are some problems by using higher order controllers such as LQ, LQG and H$\_$$\infty$/. By comparison, the PID controller is very simple and easy to apply to all real plants. To that end, we present our findings on PID controls and their potential use in the hot strip finishing mill.

Experimental Study on the Chatter Vibration at the Early Stands in Hot Strip Finishing Mills (열간 마무리 압연기 전단 스탠드의 채터 진동에 관한 실험적 연구)

  • Choi, Jae-Chan;Lee, Sung-Jin;Lee, Jun-Shin;Jun, Hyeng-IL
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.48-61
    • /
    • 1996
  • In the hot strip mill, not only the chatter vibration of finishing stands has a great influence on the surface quality of hot products, but also that is the major factors to shorten the life of rolling mill housings or to create the machine troubles. As long as the mill has been operating, the low frequency chatter at the early mill stands (No.2 and No.3) of POSCO's Kwangyang No.2 hot strip mill had been detected when rolling certain types of products, e.g., thinner gage, hard grade products. For several years, the experimental study was undertaken to analyze the cause of the chatter vibration and establish the methods to avoid the vibration to acceptable levels. The analysis and solution to the vibration problem with recommendations and revised maintenance practice are the subjects of this article.

  • PDF

Width Prediction Model and Control System using Neural Network and Fuzzy in Hot Strip Finishing Mills (신경회로망과 퍼지 논리를 이용한 열간 사상압연 폭 예측 모델 및 제어기 개발)

  • Hwang, I-Cheal;Park, Cheol-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.296-303
    • /
    • 2007
  • This paper proposes a new width control system composed of an ANWC(Automatic Neural network based Width Control) and a fuzzy-PID controller in hot strip finishing mills which aims at obtaining the desirable width. The ANWC is designed using a neural network based width prediction model to minimize a width variation between the measured width and its target value. Input variables for the neural network model are chosen by using the hypothesis testing. The fuzzy-PlD control system is also designed to obtain the fast looper response and the high width control precision in the finishing mill. It is shown through the field test of the Pohang no. 1 hot strip mill of POSCO that the performance of the width margin is considerably improved by the proposed control schemes.

Dynamic Simulation of AGC/LPC Synthetical System for Hot Strip Finishing Mill

  • Wang, Xiaoying;Wang, Jingcheng
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.24-30
    • /
    • 2008
  • A simulation of hot strip finishing mill automatic gauge control (AGC) system is built, which is divided into four modules such as rolling mill system, AGC module, looper system and strip model. The rolling mill system is built by mechanism modeling, the looper system and strip model are built by function modeling, and the AGC model is tried to use intelligent control of a multi-function AGC system. The target is attempted to use this simulation object to minimize finisher exit strip thickness deviation resulting from strip entry thickness disturbance and rolling force deviation. Simulation results show that the result of this AGC/LPC synthetical system module simulation is quite close to the actual result. The simulation system can also analyze most kinds of disturbance which affect the rolling process. It is proved that the system can represent practical situation of hot strip finishing mill process control, and be used as a basic platform of research and development for researcher and engineer.