• Title/Summary/Keyword: fingerprinting positioning

Search Result 60, Processing Time 0.033 seconds

Performance Analysis of Fingerprinting Method for LTE Positioning according to W-KNN Correlation Techniques in Urban Area (도심지역 LTE 측위를 위한 Fingerprinting 기법의 W-KNN Correlation 기술에 따른 성능 분석)

  • Kwon, Jae-Uk;Cho, Seong Yun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1059-1068
    • /
    • 2021
  • In urban areas, GPS(Global Positioning System)/GNSS(Global Navigation Satellite System) signals are blocked or distorted by structures such as buildings, which limits positioning. To compensate for this problem, in this paper, fingerprinting-based positioning using RSRP(: Reference Signal Received Power) information of LTE signals is performed. The W-KNN(Weighted - K Nearest Neighbors) technique, which is widely used in the positioning step of fingerprinting, yields different positioning performance results depending on the similarity distance calculation method and weighting method used in correlation. In this paper, the performance of the fingerprinting positioning according to the techniques used in correlation is comparatively analyzed experimentally.

Distribution Method of BLE Fingerprinting for Large Scale Indoor Envirement (광범위 분산처리 기반 BLE 핑거프린팅 실내 측위 기법)

  • Lee, Dohee;Son, Bong-Ki;Lee, Jaeho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.373-378
    • /
    • 2016
  • Recently, IPS(Indoor Positioning System) Technology has been progressing study and research, It has been studied in the fingerprinting and trilateration continuously. however because Fingerprinting and Trilateration Technology use AP(Access Point) for Positioning Calculation, Fingerprinting and Trilateration are not never had a credit positioning accuracy by using unstable RSSI in large scale. in this paper, to improve the problem about precise positioning in wide area, we introduced a concept of Sector including Cell. Sectors are not involved in each other and only fingerprinting calculation is proceed in a sector. we suggest this fingerprinting system considering efficiency and accuracy and compared to conventional fingerprinting, we demonstrated our system efficiency by mathematical techniques.

Fingerprinting Bayesian Algorithm for Indoor Location Determination (실내 측위 결정을 위한 Fingerprinting Bayesian 알고리즘)

  • Lee, Jang-Jae;Kwon, Jang-Woo;Jung, Min-A;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6B
    • /
    • pp.888-894
    • /
    • 2010
  • For the indoor positioning, wireless fingerprinting is most favorable because fingerprinting is most accurate among the technique for wireless network based indoor positioning which does not require any special equipments dedicated for positioning. The deployment of a fingerprinting method consists of off-line phase and on-line phase and more efficient and accurate methods have been studied. This paper proposes a bayesian algorithm for wireless fingerprinting and indoor location determination using fuzzy clustering with bayesian learning as a statistical learning theory.

Precise Indoor Positioning Algorithm for Energy Efficiency Based on BLE Fingerprinting (에너지 효율을 고려한 BLE 핑거프린팅 기반의 정밀 실내 측위 알고리즘)

  • Lee, Dohee;Lee, Jaeho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.10
    • /
    • pp.1197-1209
    • /
    • 2016
  • As Indoor Positioning System demands due to increased penetration and utilization of smart device, Indoor Positioning System using Wi-Fi or BLE(Bluetooth Low Energy) beacon takes center stage. In this paper, a terminal location of the user is calculated through Microscopic Trilateration using RSSI based on BLE. In the next step, a fingerprinting map appling approximate value of Microscopic Trilateration increases an efficiency of computation amount and energy for Indoor Positioning System. I suggest Indoor Positioning Algorithm based on BLE fingerprinting considering efficiency of energy by conducting precise Trilateration that assure user's terminal position by using AP(Access Point) surrounding targeted fingerprinting cells. And This paper shows experiment and result based on An Suggesting Algorithm in comparison with a fingerprinting based on BLE and Wi-Fi that be used for Indoor Positioning System.

Indoor Positioning Technology Integrating Pedestrian Dead Reckoning and WiFi Fingerprinting Based on EKF with Adaptive Error Covariance

  • Eui Yeon Cho;Jae Uk Kwon;Myeong Seok Chae;Seong Yun Cho;JaeJun Yoo;SeongHun Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.271-280
    • /
    • 2023
  • Pedestrian Dead Reckoning (PDR) methods using initial sensors are being studied to provide the location information of smart device users in indoor environments where satellite signals are not available. PDR can continuously estimate the location of a pedestrian regardless of the walking environment, but has the disadvantage of accumulating errors over time. Unlike this, WiFi signal-based wireless positioning technology does not accumulate errors over time, but can provide positioning information only where infrastructure is installed. It also shows different positioning performance depending on the environment. In this paper, an integrated positioning technology integrating two positioning techniques with different error characteristics is proposed. A technique for correcting the error of PDR was designed by using the location information obtained through WiFi Measurement-based fingerprinting as the measurement of Extended Kalman Filte (EKF). Here, a technique is used to variably calculate the error covariance of the filter measurements using the WiFi Fingerprinting DB and apply it to the filter. The performance of the proposed positioning technology is verified through an experiment. The error characteristics of the PDR and WiFi Fingerprinting techniques are analyzed through the experimental results. In addition, it is confirmed that the PDR error is effectively compensated by adaptively utilizing the WiFi signal to the environment through the EKF to which the adaptive error covariance proposed in this paper is applied.

Performance of Indoor Positioning using Visible Light Communication System (가시광 통신을 이용한 실내 사용자 단말 탐지 시스템)

  • Park, Young-Sik;Hwang, Yu-Min;Song, Yu-Chan;Kim, Jin-Young
    • Journal of Digital Contents Society
    • /
    • v.15 no.1
    • /
    • pp.129-136
    • /
    • 2014
  • Wi-Fi fingerprinting system is a very popular positioning method used in indoor spaces. The system depends on Wi-Fi Received Signal Strength (RSS) from Access Points (APs). However, the Wi-Fi RSS is changeable by multipath fading effect and interference due to walls, obstacles and people. Therefore, the Wi-Fi fingerprinting system produces low position accuracy. Also, Wi-Fi signals pass through walls. For this reason, the existing system cannot distinguish users' floor. To solve these problems, this paper proposes a LED fingerprinting system for accurate indoor positioning. The proposed system uses a received optical power from LEDs and LED-Identification (LED-ID) instead of the Wi-Fi RSS. In training phase, we record LED fingerprints in database at each place. In serving phase, we adopt a K-Nearest Neighbor (K-NN) algorithm for comparing existing data and new received data of users. We show that our technique performs in terms of CDF by computer simulation results. From simulation results, the proposed system shows that a positioning accuracy is improved by 8.6 % on average.

WLAN-based Indoor Positioning Algorithm Using The Environment Information Surround Access Points (AP 주변 환경 정보를 이용한 WLAN 기반 실내 위치추정 알고리즘)

  • Kim, Mi-Kyeong;Shin, Yo-Soon;Park, Hyun-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.551-560
    • /
    • 2011
  • Recently, There has been increasing concern about WLAN-based indoor positioning system. Most of the existing WLAN-based positioning systems use a fingerprinting method as a main approach. In the fingerprinting approach, the accuracy of the location of a mobile objects is proportional to the number of reference points. However, depending on the increasing number of reference points in the training phase, it requires more time and effort to create fingerprint database. To solve these problems, we propose the new indoor positioning algorithm that calculate the distance between a mobile objects and an AP using the information of surrounding environment WLAN based APs and applied the particle filter to the proposed algorithm in order to improve the accuracy of the estimated location in this paper. To implement this algorithm, at first environmental information database such as wall, iron door, glass door, partition etc. existing in the periphery of the AP should be established. The positioning use attenuation model and path loss model. Our experimental results with proposed algorithm are verified that the positioning accuracy was low but solved the problems with fingerprinting, compared with other positioning algorithms.

Performance Analysis of Fingerprinting algorithms for Indoor Positioning (옥내 측위를 위한 지문 방식 알고리즘들의 성능 분석)

  • Yim, Jae-Geol
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.1-9
    • /
    • 2006
  • For the indoor positioning, wireless fingerprinting is most favorable because fingerprinting is most accurate among the techniques for wireless network based indoor positioning which does not require any special equipments dedicated for positioning. The deployment of a fingerprinting method consists of off-line phase and on-line phase. Off-line phase is not a time critical procedure, but on-line phase is indeed a time-critical procedure. If it is too slow then the user's location can be changed while it is calculating and the positioning method would never be accurate. Even so there is no research of improving efficiency of on-line phase of wireless fingerprinting. This paper proposes a decision-tree method for wireless fingerprinting and performs comparative analysis of the fingerprinting techniques including K-NN, Bayesian and our decision-tree.

Extended Kalman Filter Method for Wi-Fi Based Indoor Positioning (Wi-Fi 기반 옥내측위를 위한 확장칼만필터 방법)

  • Yim, Jae-Geol;Park, Chan-Sik;Joo, Jae-Hun;Jeong, Seung-Hwan
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.2
    • /
    • pp.51-65
    • /
    • 2008
  • The purpose of this paper is introducing WiFi based EKF(Extended Kalman Filter) method for indoor positioning. The advantages of our EKF method include: 1) Any special equipment dedicated for positioning is not required. 2) implementation of EKF does not require off-line phase of fingerprinting methods. 3) The EKF effectively minimizes squared deviation of the trilateration method. In order to experimentally prove the advantages of our method, we implemented indoor positioning systems making use of the K-NN(K Nearest Neighbors), Bayesian, decision tree, trilateration, and our EKF methods. Our experimental results show that the average-errors of K-NN, Bayesian and decision tree methods are all close to 2.4 meters whereas the average errors of trilateration and EKF are 4.07 meters and 3.528 meters, respectively. That is, the accuracy of our EKF is a bit inferior to those of fingerprinting methods. Even so, our EKF is accurate enough to be used for practical indoor LBS systems. Moreover, our EKF is easier to implement than fingerprinting methods because it does not require off-line phase.

  • PDF