• 제목/요약/키워드: fingerprint liveness detection

검색결과 5건 처리시간 0.018초

Convolutional Neural Networks 특징을 이용한 지문 이미지의 위조여부 판별 및 시각화 (Fingerprint Liveness Detection and Visualization Using Convolutional Neural Networks Feature)

  • 김원진;이경수;박은수;김정민;김학일
    • 정보보호학회논문지
    • /
    • 제26권5호
    • /
    • pp.1259-1267
    • /
    • 2016
  • 최근 지문 인식을 통한 사용자 인증 기술이 상용화 되면서 위조 지문 이미지 판별이 더욱 중요해졌다. 본 논문에서는 CNN 특징을 이용한 위조 지문 이미지 판별 방법을 제안하였으며, CNN 모델이 실제 지문의 어느 부분에 반응하여 위조지문을 분류하는지 시각화 방법을 통해 분석하였다. 제안하는 방법은 지문영역과 배경영역을 분리하는 전처리 작업 후 CNN 모델을 이용하여 지문의 위조여부를 분류한다. 지문을 단순히 생체지문과 위조지문으로 분류하는 것이 아니라 위조지문을 구성하는 물질별로 분류하여 생체지문과 위조지문들에 대한 특징분석을 제공한다. 실험에 사용한 데이터베이스로는 생체 지문 이미지 6500여 장과 위조 지문 이미지 6000여 장으로 구성되어 있는 LivDet2013을 사용하였으며 위조여부에 대한 ACE 값으로 3.1%, 구성 물질 분류 정확도는 평균 79.58%를 보여 높은 수준의 분류성능을 갖고 있음을 확인하였다.

패치기반 컨볼루션 뉴럴 네트워크 특징을 이용한 위조지문 검출 (Fingerprint Liveness Detection Using Patch-Based Convolutional Neural Networks)

  • 박은수;김원진;이경수;김정민;김학일
    • 정보보호학회논문지
    • /
    • 제27권1호
    • /
    • pp.39-47
    • /
    • 2017
  • 최근 모바일 기기에서의 생체인증 시스템의 증가와 출입관리 시스템에서의 위조지문을 이용한 출입 기록 조작으로 인해 위조 지문 검출에 대한 논의가 다시 활발해지고 있다. 본 논문에서는 입력 지문영상을 패치들로 나누고, 각 패치들에 CNN을 적용하여 위조, 생체, 배경의 세 가지로 분류한다. 이 중 배경으로 분류된 패치들을 제외하고 위조와 생체로 분류된 패치들의 수를 세어서 더 많은 패치가 인식된 쪽으로 위조여부를 판단하게 된다. CNN에 배경 클래스를 추가하여 분류하기 때문에, 제안하는 방법은 영상분할과 같은 추가적인 전처리 과정이 필요하지 않다. 제안하는 방법은 LivDet2011, LivDet2013, LivDet2015에 대하여 실험을 진행하였으며 분류결과 3.06%의 평균 오검출을 보여 매우 우수한 성능을 나타냄을 확인하였다.

상관 필터를 이용한 위조 지문 검출 방법 (Liveness Detection of Fingerprints Using Correlation Filters)

  • 최희승;최경택;김재희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.355-358
    • /
    • 2005
  • Fingerprint recognition systems are the most widely used in biometrics for personal authentication. As they become more familiar, the security weaknesses of fingerprint sensors are becoming better known. In this paper, we propose a liveness detection method that applies correlation filter to the fingerprint recognition systems. The physiological characteristic of sweat pore, observed only in live people, is used as a measure to classify 'live' fingers from 'spoof' fingers. Previous works show that detection of sweat pores and perspiration patterns in fingerprint images can be used as an anti-spoofing measure. These methods don't consider the characteristic of pores in each individual. We construct the correlation filters of each individual which are composed of their pore information. We make the final decision about the "livens" of fingerprint using correlation output. The proposed algorithm was applied to a data set of 110 live, 110 spoof fingerprint images from optical fingerprint scanner and achieved classification rate of 80%.

  • PDF

Empirical study on liveness detection of fingerprint

  • Jin Chang-Long;Huan Nguyen van;Kim Ha-Kil
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 2006년도 하계학술대회
    • /
    • pp.241-245
    • /
    • 2006
  • Recent studies show that fingerprint recognition technology is confronted with spoofing of artificial fingers. In order to overcome this problem, the fingerprint recognition system needs to distinguish a fake finger from a live finger. This paper examines existing software-based approaches for fingerprint liveness detection through experiments. Implemented and tested in this paper are the approaches based on deformation, wavelet, and perspiration. These approaches will be analyzed and compared based on experimental results.

  • PDF

다중 특징을 이용한 위조 지문 검출 (Liveness Detection of Fingerprints using Multi-static Features)

  • 강래충;최희승;김재희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.295-296
    • /
    • 2007
  • Fake fingersubmission to the sensor is a major problem in fingerprint recognition systems. In this paper, we introduce a novel liveness detection method using multi-static features. For convenience and usefulness of field application, static features are only considered to detect 'live' and 'fake' fingerprint images. Individual pore spacing, noise of image and first order statistics of image are analyzed as our static features to reflect the Physiological and statistical characteristics of live and fake fingerprint.

  • PDF