• Title/Summary/Keyword: fingerprint Recognition

Search Result 272, Processing Time 0.02 seconds

Design of Fingerprints Identification Based on RBFNN Using Image Processing Techniques (영상처리 기법을 통한 RBFNN 패턴 분류기 기반 개선된 지문인식 시스템 설계)

  • Bae, Jong-Soo;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1060-1069
    • /
    • 2016
  • In this paper, we introduce the fingerprint recognition system based on Radial Basis Function Neural Network(RBFNN). Fingerprints are classified as four types(Whole, Arch, Right roof, Left roof). The preprocessing methods such as fast fourier transform, normalization, calculation of ridge's direction, filtering with gabor filter, binarization and rotation algorithm, are used in order to extract the features on fingerprint images and then those features are considered as the inputs of the network. RBFNN uses Fuzzy C-Means(FCM) clustering in the hidden layer and polynomial functions such as linear, quadratic, and modified quadratic are defined as connection weights of the network. Particle Swarm Optimization (PSO) algorithm optimizes a number of essential parameters needed to improve the accuracy of RBFNN. Those optimized parameters include the number of clusters and the fuzzification coefficient used in the FCM algorithm, and the orders of polynomial of networks. The performance evaluation of the proposed fingerprint recognition system is illustrated with the use of fingerprint data sets that are collected through Anguli program.

Development of Template Compensation Algorithm for Interoperable Fingerprint Recognition using Taylor Series (테일러시리즈를 이용한 이기종 지문 센서 호환 템플릿 보정 알고리즘 개발)

  • Jang, Ji-Hyeon;Kim, Hak-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.4
    • /
    • pp.93-102
    • /
    • 2008
  • Fingerprint sensor interoperability refers to the ability of a system to compensate for the variability introduced in the finger data of individual due to the deployment of different sensors. The purpose of this paper is the development of a compensation algorithm by which the interoperability of fingerprint recognition can be improved among various different fingerprint sensors. In this paper we show that a simple transformation derived to form a Taylor series expansion can be used in conjunction with a set of corresponding minutia points to improve the correspondence of finer fingerprint details within a fingerprint image. This is demonstrated by an applying the transformation to a database of fingerprint images and examining the minutiae match scores with and without the transformation. The EER of the proposed method was improved by average 60.94% better than before compensation.

Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest (핑거프린트와 랜덤포레스트 기반 실내 위치 인식 시스템 설계와 구현)

  • Lee, Sunmin;Moon, Nammee
    • Journal of Broadcast Engineering
    • /
    • v.23 no.1
    • /
    • pp.154-161
    • /
    • 2018
  • As the number of smartphone users increases, research on indoor location recognition service is necessary. Access to indoor locations is predominantly WiFi, Bluetooth, etc., but in most quarters, WiFi is equipped with WiFi functionality, which uses WiFi features to provide WiFi functionality. The study uses the random forest algorithm, which employs the fingerprint index of the acquired WiFi and the use of the multI-value classification method, which employs the receiver signal strength of the acquired WiFi. As the data of the fingerprint, a total of 4 radio maps using the Mac address together with the received signal strength were used. The experiment was conducted in a limited indoor space and compared to an indoor location recognition system using an existing random forest, similar to the method proposed in this study for experimental analysis. Experiments have shown that the system's positioning accuracy as suggested by this study is approximately 5.8 % higher than that of a conventional indoor location recognition system using a random forest, and that its location recognition speed is consistent and faster than that of a study.

Minutiae Extraction Algorithms and Fingerprint Acquisition System using the Data Structure (자료구조를 이용한 지문인식시스템에서의 특이점 추출 알고리즘)

  • Park, Jong-Min;Lee, Jung-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1787-1793
    • /
    • 2008
  • Fingerprint Recognition System is made up of Off-line treatment and On-line treatment; the one is registering all the information of there trieving features which are retrieved in the digitalized fingerprint getting out of the analog fingerprint through the fingerprint acquisition device and the other is the treatment making the decision whether the users are approved to be accessed to the system or not with matching them with the fingerprint features which are retrieved and database from the input fingerprint when the users are approaching the system to use. In this paper, we propose a new data structure, called Union and Division, for processing binarized digital fingerprint image efficiently. We present a minutiae extraction algorithm that is using Union and Division and consists of binarization, noise removal, minutiae extraction stages.

The Biometric Authentication Scheme Capable of Multilevel Security Control (보안레벨 조절이 가능한 바이오메트릭 인증 기법)

  • Yun, Sunghyun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.2
    • /
    • pp.9-14
    • /
    • 2017
  • A fingerprint is unique to each person and can be represented as a digital form. As the fingerprint is the part of human body, fingerprint recognition is much more easy to use and secure rather than using password or resident card for user authentication. In addition, as the newly released smart phones have built-in camera and fingerprint sensors, the demand for biometric authentication is increasing rapidly. But, the drawback is that the fingerprint can be counterfeited easily and if it's exposed to the hacker, it cannot be reused. Thus, the original fingerprint template should be transformed for registration and authentication purposes. Existing transformation functions use passcode to transform the original template to the cancelable form. Additional module is needed to input the passcode, so it requires more cost and lowers the usability. In this paper, we propose biometric authentication scheme that is economic and easy to use. The proposed scheme is consisted of cancelable biometric template creation, registration and user authentication protocols, and can control several security levels by configuring the number of fingerprints and scan times. We also analyzed that our scheme is secure against the brute-force attack and the active attacks.

Data Mixing Augmentation Method for Improving Fake Fingerprint Detection Rate (위조지문 판별률 향상을 위한 학습데이터 혼합 증강 방법)

  • Kim, Weonjin;Jin, Cheng-Bin;Liu, Jinsong;Kim, Hakil
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.305-314
    • /
    • 2017
  • Recently, user authentication through biometric traits such as fingerprint and iris raise more and more attention especially in mobile commerce and fin-tech fields. In particular, commercialized authentication methods using fingerprint recognition are widely utilized mainly because customers are more adopted and used to fingerprint recognition applications. In the meantime, the security issues caused by fingerprint falsification bring lots of attention. In this paper, we propose a new method to improve the performance of fake fingerprint detection using CNN(Convolutional Neural Network). It is common practice to increase the amount of learning data by using affine transformation or horizontal reflection to improve the detection rate in CNN characteristics that are influenced by learning data. However, in this paper we propose an effective data augmentation method based on the database difficulty level. The experimental results confirm the validity of proposed method.

Template Fusion for Fingerprint Recognition (지문 등록을 위한 템플릿 융합 알고리즘)

  • 류춘우;문지현;김학일
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.51-64
    • /
    • 2004
  • This paper proposes an algerian of generating a tuner-template from multiple fingerprint impressions using a data fusion technique for fingerprint enrollment. The super-template is considered as a single fingerprint template which contains most likely true minutiae based on multiple fingerprint images. The proposed algorithm creates the super template by utilizing a recursive Bayesian estimation method (RBEM), which assumes a sequential fingerprint input model and estimates the credibility of the minutiae in previous input templates froma current input template. Consequently. the RBEM assigns a higher credibility to commonly detectable minutiae from several input templates and a lower credibility to rarely found minutiae from other input templates. Likewise, the RBEM is able to estimate a credibility of the minutia type (ridge ending or bifurcation). Preliminary experiments demonstrate that, as the number of fingerfrint images increases, the performance of recognition can be improved while maintaining the processing time and the size of memory storage for tile super-template almost constant.

SoC Implementation of Fingerprint Feature Extraction System with Ridge Following (융선추적을 이용한 지문 특징점 추출기의 SoC 구현)

  • 김기철;박덕수;정용화;반성범
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.5
    • /
    • pp.97-107
    • /
    • 2004
  • This paper presents an System-on-Chip(SoC) implementation of fingerprint feature extraction system. Typical fingerprint feature extraction systems employ binarization and thinning processes which cause many extraction errors for low qualify fingerprint images and degrade the accuracy of the entire fingerprint recognition system. To solve these problems, an algorithm directly following ridgelines without the binarization and thinning process has been proposed. However, the computational requirement of the algorithm makes it hard to implement it on SoCs by using software only. This paper presents an implementation of the ridge-following algorithm onto SoCs. The algorithm has been modified to increase the efficiency of hardwares. Each function block of the algorithm has been implemented in hardware or in software by considering its computational complexity, cost and utilization of the hardware, and efficiency of the entire system. The fingerprint feature extraction system has been developed as an IP for SoCs, hence it can be used on many kinds of SoCs for smart cards.

A Study of Matching Algorithm for Fingerprint Recognition (지문 인식을 위한 정합 알고리즘에 관한 연구)

  • 조기형;이대령
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.2
    • /
    • pp.155-161
    • /
    • 1991
  • In this paper, Fingerprint matching mathod which is able to confirm one's identify using position and direction data of minutiae (ending point & bifurcation). Using number of response data, quantity of transfer, quantity of position matching. We decided whether fingerprint identity is true of not.

  • PDF

Run Representation Based Minutiae Extraction in Fingerprint (수평과 수직 Run 표현을 이용한 지문영상에서의 minutiae 추출)

  • 황희연;신정환;이준재;진성일
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.65-68
    • /
    • 2002
  • In an automatic fingerprint recognition system, a thinning process after binarization is commonly used. However it gives rise to spurs and holes often causing many spurious minutiae. Thus, more elaborate postprocessing is urgently needed to remove such spurious minutiae. To overcome this problem, we present a method of extracting minutiae based on horizontal and vertical run-length encoding from a binary fingerprint image without thinning process. Experimental results show that the proposed method for extracting minutiae is fairly reliable and fast, when il is compared to other method adopting a thinning process.

  • PDF