• 제목/요약/키워드: finger force

검색결과 187건 처리시간 0.024초

Numerical investigation on pressure responsiveness properties of the skirt-cushion system of an air cushion vehicle

  • Xu, Shengjie;Tang, Yujia;Chen, Kejie;Zhang, Zongke;Ma, Tao;Tang, Wenyong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.928-942
    • /
    • 2020
  • The pressure responsiveness property of a skirt-cushion system, which is closely related to the overall performance of Air Cushion Vehicles (ACVs), has always been the difficulty and challenging problem involving cushion aerodynamics and flexible skirt dynamics. Based on a widely used bag and finger skirt-cushion system, the pressure responsiveness properties are investigated numerically. The physical process and mechanism are analyzed and a numerical method for evaluating the pressure responsiveness property is proposed. A cushion-skirt information communication platform is also presented for interchanging the force and the skirt configuration between cushion aerodynamics and flexible skirt dynamics. The pressure responsiveness of a typical skirt-cushion system is calculated and the results demonstrate that the pressure responsiveness property helps alleviate the influence of the cushion height changing on the overall performance of ACVs. Finally, the influences of skirt geometrical and cushion aerodynamic parameters on the pressure responsiveness properties are discussed systematically, giving insight into the design of skirt-cushion systems.

비대면 헤어 스타일링 재현을 위한 VR 인터렉션 연구 (A Study of VR Interaction for Non-contact Hair Styling)

  • 박성준;유상욱;진성아
    • 문화기술의 융합
    • /
    • 제8권2호
    • /
    • pp.367-372
    • /
    • 2022
  • 최근 뉴노멀시대가 도래하면서 실감형 기술과 언택트 기술은 사회적 관심을 받고 있다. 하지만 헤어 스타일링 분야는 헤어 시뮬레이션을 중점으로 헤어 자체의 연출이나, 개별적인 움직임, 모델링에 초점을 두고 있다. 시대적 요구와 개선된 실습환경 조성을 위해 본 연구에서는 비대면 헤어 스타일링 VR 시스템을 제안하였다. 이론 고찰에서는 기존 헤어 컷 연구 사례에 대해 조사하였다. 기존 헤어 컷 관련 그래픽스 연구는 주로 힘 기반 피드백 위주의 연구이다. 본 논문에서 주장하는 가상환경에서 인터랙티브한 헤어 컷 작업에 대한 연구는 아직 이루어지고 있지 않다. 본 연구에서는 미용에 필요한 동작을 핑거 트래킹이 가능한 VR 컨트롤러에서 미용도구 선택, 자르기, 회전 등이 가능하도록 하였으며 비대면 협업 환경으로 구축하였다. 연구 결과로서, 정확한 헤어 절단 작업을 위해 소지걸이 애니메이션에 따른 핑거 트래킹과 가위의 움직임이 위치 보정에 따른 동기화 작업의 결과와 다중 사용자 기반의 가상 협업 환경에서의 실시간 인터랙티브 헤어 컷 작업을 실험하였다, 비대면 상황에서 헤어 스타일링에 필요한 커트동작에 관한 학습이 가능하게 되었으며 교수자와 학습자는 VR HMD 내장 마이크와 Photon Voice로 상호 간의 의사소통이 가능하게 되었다.

공용 터치 장치를 위한 외골격 유연 구조 (Exo-Skeletal Flexible Structure for Communal Touch Device)

  • 정재윤;이은지;박형률;추원식
    • 적정기술학회지
    • /
    • 제6권2호
    • /
    • pp.219-225
    • /
    • 2020
  • 터치 장비와 스마트 러닝의 중요성이 높아짐에 따라 공공 기관 및 교육시설에서는 스마트 디바이스(smart device)를 업무 및 교육 환경에 적용하는 추세이다. 그러나 공공 스마트 디바이스 사용자들은 직·간접적 감염병 확산에 노출될 위험이 있다. 본 연구는 스마트 디바이스 사용자를 위해 손가락 끝을 감싸는 외골격 장치(Exo-finger)를 개발하였으며, 공용 장비에 활용 시 질병 예방 효과를 가지고자 한다. 활성화 재료인 카본 블랙(Carbon Black, CB)과 고분자 탄성중합체(elastomer)를 혼합한 2차 재료를 금형에 넣어 외골격 장치를 제작하였다. 이 장치는 CB 함량이 0.030 wt.% 이상일 때, 터치 기능이 있는 것으로 확인되었으며 탄성중합체의 함량을 변화시켜 사람이 스마트 디바이스를 터치할 때와 유사한 마찰력(마찰계수 2.5)를 가질 수 있도록 하였다. 실험을 통하여 CB의 함유량은 마찰 계수에 주는 영향이 거의 없음을 확인하였다. 완성된 시제품을 스마트 디바이스에 테스트한 결과, 개발된 외골격 장치는 보호 장구를 착용하여 터치가 불가능한 경우 또는 감염병 확산을 막기 위해 장갑 등의 장비를 사용하는 경우에 유용하게 활용할 수 있음을 확인하였다.

볼링투구동작의 운동역학적 분석(II) (Mechanical Analysis of throw motion in Bowling)

  • 이경일
    • 한국운동역학회지
    • /
    • 제12권1호
    • /
    • pp.173-191
    • /
    • 2002
  • The purpose of this study was defined efficient throw motion pattern to obtain the quantitative data and to achieve successful bowling through kinetic - kinematic variables on the throw motion. Subject of group composed of three groups : Higher bowlers who are two representative bowlers with 200 average points and one pro-bowler. Middle bowlers who are three common persons with 170 average points. Lower bowler who are three common persons with 150 average points. Motion analysis on throw motion in three groups respectively has been made through three-dimension cinematography using DLT method. Two high-speed video camera at operating 180 frame per secondary. One-way ANOVA has been used to define variable relations. Analyzed result and conclusion are the following : The displacement of back of the hand must have wider difference of each right-left displacement to increase the spin of the ball. In high bowlers group, difference between the front-rear position of back of the hand in case of success and that in case of failure in follow throw is 0.17m. That is to say, momentum in case of success come to increase greatly, compared with that in case of failure. To increase the spin of the ball, the potential difference should be narrower in follow through. In case of the high bowlers, the velocity of the front-rear direction of the back of the hand has been the fastest both in release and follow through, compared with those in other groups, which has contributed to increasing the spin force of the ball. The orders in the resultant velocity of the back of the hand has shown the this : the finger tip$\rightarrow$the back of the hand$\rightarrow$wrist.These orders made the proximal segment support the distal segment. The distal segment has provided the condition to accelerate the velocity. In case of failure, the suddenly increased velocity has caused the failure in the follow through. Acutely flexing the angle of the back of the hand has contributed to lifting to increase the spin of the ball.

Effect of spinning parameters of polyethersulfone based hollow fiber membranes on morphological and mechanical properties

  • Tewfik, Shadia R.;Sorour, Mohamed H.;Shaalan, Hayam F.;Hani, Heba A.
    • Membrane and Water Treatment
    • /
    • 제9권1호
    • /
    • pp.43-51
    • /
    • 2018
  • Hollow fiber (HF) membranes are gaining wide interest over flat membranes due to their compaction and high area to surface volume ratio. This work addresses the fabrication of HF from polysulfone (PS) and polyethersulfone (PES) using N-methylpyrrolidone (NMP) as solvent in addition to other additives to achieve desired characteristics. The semi-pilot spinning system includes jacketed vessel, four spinneret block, coagulation and washing baths in addition to dryer and winder. Different parameters affecting dry-wet spinning phase inversion process were investigated. Dope compositions of PES, NMP and polyvinyl pyrrolidone (PVP) of varying molecular weights as additive were addressed. Some critical parameters of importance were also investigated. Those include dope flow rate, air gap, coagulation & washing baths and drying temperatures. The measured dope viscosity was in the range from 1.7 to 36.5 Pa.s. Air gap distance was adjusted from 20 to 45 cm and coagulation bath temperature from 20 to $46^{\circ}C$. The HF membranes were characterized by scanning electron microscope (SEM), atomic force microscope (AFM) and mechanical properties. Results indicated prevalence of finger like structure and average surface roughness from about 29 to 78.3 nm. Profile of stress strain characteristics revealed suitability of the fibers for downstream interventions for fabrication of thin film composite membrane. Different empirical correlations were formulated which enable deeper understanding of the interaction of the above mentioned variables. Data of pure water permeability (PWP) confirmed that the fabricated samples fall within the microfiltration (MF)-ultrafiltration (UF) range of membrane separation.

Water desalination by membrane distillation using PVDF-HFP hollow fiber membranes

  • Garcia-Payo, M.C.;Essalhi, M.;Khayet, M.;Garcia-Fernandez, L.;Charfi, K.;Arafat, H.
    • Membrane and Water Treatment
    • /
    • 제1권3호
    • /
    • pp.215-230
    • /
    • 2010
  • Poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, hollow fiber membranes were prepared by the dry/wet spinning technique using different polyethylene glycol (PEG) concentrations as non-solvent additive in the dope solution. Two different PEG concentrations (3 and 5 wt.%). The morphology and structural characteristics of the hollow fiber membranes were studied by means of optical microscopy, scanning electron microscopy, atomic force microscopy (AFM) and void volume fraction. The experimental permeate flux and the salt (NaCl) rejection factor were determined using direct contact membrane distillation (DCMD) process. An increase of the PEG content in the spinning solution resulted in a faster coagulation of the PVDF-HFP copolymer and a transition of the cross-section internal layer structure from a sponge-type structure to a finger-type structure. Pore size, nodule size and roughness parameters of both the internal and external hollow fiber surfaces were determined by AFM. It was observed that both the pore size and roughness of the internal surface of the hollow fibers enhanced with increasing the PEG concentration, whereas no change was observed at the outer surface. The void volume fraction increased with the increase of the PEG content in the spinning solution resulting in a higher DCMD flux and a smaller salt rejection factor.

가상 환경 상의 헬리콥터 조종실 설계를 위한 정량적인 인간공학적 평가 방법 개발 (Development of Quantitative Ergonomic Assessment Method for Helicopter Cockpit Design in a Digital Environment)

  • 정기효;박장운;이원섭;강병길;엄주호;박세권;유희천
    • 대한인간공학회지
    • /
    • 제29권2호
    • /
    • pp.203-210
    • /
    • 2010
  • For the development of a better product which fits to the target user population, physical workloads such as reach and visibility are evaluated using digital human simulation in the early stage of product development; however, ergonomic workload assessment mainly relies on visual observation of reach envelopes and view cones generated in a 3D graphic environment. The present study developed a quantitative assessment method of physical workload in a digital environment and applied to the evaluation of a Korean utility helicopter (KUH) cockpit design. The proposed assessment method quantified physical workloads for the target user population by applying a 3-step process and identified design features requiring improvement based on the quantified workload evaluation. The scores of physical workloads were quantified in terms of posture, reach, visibility, and clearance, and 5-point scales were defined for the evaluation measures by referring to existing studies. The postures of digital humanoids for a given task were estimated to have the minimal score of postural workload by finding all feasible postures that satisfy task constraints such as a contact between the tip of the index finger and a target point. The proposed assessment method was applied to evaluate the KUH cockpit design in the preliminary design stage and identified design features requiring improvement. The proposed assessment method can be utilized to ergonomic evaluation of product designs using digital human simulation.