• Title/Summary/Keyword: fines content

Search Result 100, Processing Time 0.027 seconds

Cyclic liquefaction and pore pressure response of sand-silt mixtures

  • Dash, H.K.;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.83-108
    • /
    • 2011
  • The effect of non-plastic fines (silt) on liquefaction and pore pressure generation characteristics of saturated sands was studied through undrained stress controlled cyclic triaxial tests using cylindrical specimens of size 50 mm diameter and height 100 mm at different cyclic stress ratios and at a frequency of 0.1 Hz. The tests were carried out in the laboratory adopting various measures of sample density through various approaches namely gross void ratio approach, relative density approach, sand skeleton void ratio approach, and interfine void ratio approach. The limiting silt content and the relative density of a specimen were found to influence the undrained cyclic response of sand-silt mixtures to a great extent. Undrained cyclic response was observed to be independent of silt content at very high relative densities. However, the presence of fines significantly influenced this response of loose to medium dense specimens. Combined analyses of cyclic resistance have been done using the entire data collected from all the approaches.

Properties of the Super Flowing Concrete Using Crushed Stone Fines (쇄석분을 사용한 초유동콘크리트의 특성에 관한 연구)

  • 이승한;정용욱
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.476-483
    • /
    • 2001
  • 초유동콘크리트는 유동성 증진 및 충전성 향상을 위해 단위분체량을 크게하기 때문에 콘크리트의 고강도화와 수화발열량을 증가시키는 문제점을 가지고 있다. 이에 본 연구는 초유동콘크리트의 강도조절과 수화열 저감을 위해 쇄석분을 이용하여 초유동콘크리트의 강도, 유동성, 내구성능 및 건조수축 특성을 검토하였다. 실험결과 쇄석분은 치환율 10% 증가시마다 무치환시의 압축강도를 약 10~15%씩 감소시키며, 변형계수와 물구속비를 감소시켜 초유동콘크리트의 유동성 향상에 효과적이다. 또한 초유동콘크리트에서 쇄석분 10%치환시 마다 단위시멘트량 감소에 따른 최고 단열온도상승량을 약 4$^{\circ}C$씩 감소시켰다. 반면 건조수축량은 10%치환시 마다 약 5%증가시켰다. 한편 초유동콘크리트의 내구성능은 단위분체량과 유동성향상에 따른 조직의 치밀화로 쇄석분 치환에 관계없이 상대동탄성계수 90%이상으로 우수하게 나타났다. 이와 같이 분체로서 쇄석분 사용은 치환량에 따른 초유동콘크리트의 강도조절이 가능하며 수화발열량을 저감시킬 수 있다. ^ x Super flowing concrete causes high strength and the increase of heat of hydration because of the big unit powder content of concrete to increase flowability and to improve compact of concrete. Therefore, this study investigates the characteristic properties of strength, flowability, durability and drying shrinkage to control strength and to reduce heat of hydration of super flowing concrete using crushed stone fines. According to the experimental results, when crushed stone fines are increased every 10%, 10~15% of compressive strength is decreased and flowability of super flowing concrete is effectively improved due to the decrease of modulus of deformation and confined water ratio. When crushed stone fines are replaced every 10%, 4$^{\circ}C$ of the highest adiabatic temperature rise is decreased by reducing the unit cement. However, 5% of drying shrinkage is increased in the same condition. In the meantime, durability of super flowing concrete is excellent, having over 90 % of good relative dynamic modulus of elasticity due to fineness of formation caused by the increase of the unit powder content and the improvement of flowability, without regard to the replacement of crushed stone fines. Therefore, it can be said that the usage of crushed stone fines can control the strength of super flowing concrete by replacement and reduce heat of hydration.

The Effect of Polyelectrolytes on the Drainage Properties of BKP (고분자 전해질 처리에 따른 BKP의 탈수특성 변화)

  • 성용주;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.2
    • /
    • pp.64-69
    • /
    • 1999
  • Drainage phenomena on the conventional fourdrinier table can be divided into two distinct zones based on the drainage mechanisms involved. In the forming zone, natural drainage is the principal water removal mechanism, while in the vacuum zone vacuum dewatering displaces water in the wet sheet with air. In this study to investigate the influence of polyelectrolyte addition on natural and vacuum dewatering a vacuum drainage tester was developed and used. Addition of PAM decreased the dryness of the wet sheet after vacuum dewatering since substantial reduction in vacuum level occurred due to flocculation of fibers. Addition of PAM, however, increased the wet web dryness when the fines content of the stock is greater than 35% indicating the presence of fines reduced the air permeability of the wet web to increase its response to vacuum dewatering. On the other hand, PEI, which flocculates the fibers and fines via patch formation, showed little impact on the drainage characteristics of the stocks.

  • PDF

Evaluation of Mechanical Characteristics and Concentration Target Layer Applicability of Silty Sand by Fines Content (실트질 모래의 세립분 함유율에 따른 역학적 특성 및 압밀 대상층 적용성 평가)

  • Jung-Meyon Kim;Min-Seo Kang;Jong-Joo Kim;Seung-Joo Lee;Young-Seok Kim;Chan-Young, Park;Yong-Seong, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.37-46
    • /
    • 2023
  • In this paper, the physical properties, stress deformation and strength characteristics, density and permeability characteristics of silty sand (SM) by fines content were analyzed through indoor tests. also based on the results of the indoor tests, a compact analysis was performed according to the content of SM, and the applicability of SM ground to the compacted target layer was evaluated by comparing it with the measurement data of the actual problem site. As a result of indoor tests and compression analysis, SM changed its mechanical properties from sandy soil to viscous soil when the fine particle content was 35% or higher, and using field measurement data, SM was found to have a higher compression tendency than direct subsidence. Therefore, the mechanical characteristics of SM above Fc 35% are considered to be similar to that of viscous soil, which is different from the compression characteristics of the tendency of immediate subsidence to conventional sandy soil, so it is necessary to present the mechanical characteristics of SM through further research. The research findings highlight the importance of considering consolidation settlement in silty sand (SM) when evaluating soft soil conditions. These findings can aid in revising criteria for assessing weak ground conditions by providing essential engineering property data based on varying fines content in silty sand.

Effects of Recycling on the Adsorption of Cationic Polyacrylamide onto Fiber and Fines (리사이클링 횟수에 따른 장섬유와 미세섬유의 폴리아크릴아미드 흡착특성 및 종이의 물성 변화)

  • 주성범;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.31-38
    • /
    • 1999
  • Adsorption of polymeric flocculants and dry strength agents onto the surface of papermaking fibers is critical for their effective utilization since the polymeric substances not adsorbed on fibers or fines keep recirculating in the papermaking system to cause various operational difficulties and loss of raw materials. Problems associated with the unadsorbed polymeric substances generate great attention because unprecedent interests in utilization of recycled papers and papermaking system closure. In this study, to understand the effects of recycling on the adsorption propensity of cationic polyacryamide (PAM) dry strength resin onto hardwood bleached kraft pulp fibers and fines a systematic approach was followed. Never dried bleached hardwood kraft pulp was recycled in two different ways. In mode one recycling experiment never dried pulp was beaten then recycled three times by employing simple drying and disintegrating steps. In mode two recycling experiment beating of the recycled pulp was carried out after each recycling step. Adsorption of cationic PAM on fibers and fines was evaluated employing Kjeldahl nitrogen analysis method. The influence of recycling on water retention value, carboxyl content, sheet density and tensile strength of the pulp was examined. As the number of recycling increased, water retention value of the fiber was reduced due to hornification and this in turn caused a decrease in adsorption of cationic PAM. On the other hand, the carboxyl content of the recycled fibers increased because of the oxidation of fibers occurred during drying, and this caused an increase in adsorption of cationic PAM. Because of these two opposing factors the adsorption of the cationic PAM on the recycled fibers decreased and then increased slightly at third recycling step. Increase of PAM adsorption, however, did not provide did not provide and strength improvement for the recycled pulp fibers indicating greater influence of the honification on interfiber bonding.

  • PDF

Effect of Non-Plastic Fines Content on the Pore Pressure Generation of Sand-Silt Mixture Under Strain-Controlled CDSS Test (변형률 제어 반복직접단순전단시험에서 세립분이 모래-실트 혼합토의 간극수압에 미치는 영향)

  • Tran, Dong-Kiem-Lam;Park, Sung-Sik;Nguyen, Tan-No;Park, Jae-Hyun;Sung, Hee-Young;Son, Jun-Hyeok;Hwang, Keum-Bee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 2024
  • Understanding the behavior of soil under cyclic loading conditions is essential for assessing its response to seismic events and potential liquefaction. This study investigates the effect of non-plastic fines content (FC) on excess pore pressure generation in medium-density sand-silt mixtures subjected to strain-controlled cyclic direct simple shear (CDSS) tests. The investigation is conducted by analyzing excess pore pressure (EPP) ratios and the number of cycles to liquefaction (Ncyc-liq) under varying shear strain levels and FC values. The study uses Jumunjin sand and silica silt with FC values ranging from 0% to 40% and shear strain levels of 0.1%, 0.2%, 0.5%, and 1.0%. The findings indicate that the EPP ratio increases rapidly during loading cycles, with higher shear strain levels generating more EPP and requiring fewer cycles to reach liquefaction. At 1.0% and 0.5% shear strain levels, FC has a limited effect on Ncyc-liq. However, at a lower shear strain level of 0.2%, increasing FC from 0 to 10% reduces Ncyc-liq from 42 to 27, and as FC increases further, Ncyc-liq also increases. In summary, this study provides valuable insights into the behavior of soil under cyclic loading conditions. It highlights the significance of shear strain levels and FC values in excess pore pressure generation and liquefaction susceptibility.

Effect of Fines Content on the Cyclic Shear Characteristics of Sand-clay Mixtures (점토혼합모래의 반복전단특성에 대한 세립분 함유율의 영향)

  • Kim, Uk-Gie;Hyodo, Masayuki;Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.51-59
    • /
    • 2008
  • In this study, cyclic shear characterics of sand-clay mixtures were analyzed. In order to perform cyclic triaxial tests on sand clay mixtures, natural clays with activity and silica sand were mixed variously to reproduce soils with wide range of grain size compositions. Test specimens with various fines contents were prepared by the moisture compaction and pre-consolidation methods, while paying attention to the void ratio expressed in terms of the sand structure and clay structures, and undrained cyclic shear tests were performed. In the test results, cyclic shear strength decreased with increasing of sand granular void ratio below 20% of fine contents. When the granular void ratio of the test specimen exceeded the maximum void ratio of the silica sand, the clay matrix dominated the soil structure, and soil structures were not influenced by compaction energy. It was observed that, the matrix structure of the coarse particles has great effect on the undrained cyclic shear strength characteristics for sand-clay mixtures, and therefore, it is more appropriate to pay more attention to the density of the sand structure, rather than to the fines content.

Effect of Fines on the Stability of Unsaturated Soil Slopes (불포화 사면안정에 미치는 세립분의 영향분석)

  • Lee, Kyu-Hyun;Jeong, Sang-Seom;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.101-109
    • /
    • 2007
  • In South Korea, many weathered soil slopes are composed of soil mixtures with certain amount of clay fractions in natural soil deposits. Accordingly, it is very important to analyze that effect of the fines on the stability of unsaturated soil slopes. In this study, five different soil types classified by mixture portion of fines were used and experiment on the soil-water characteristic curve tests (SWCC) using GCTS (Geotechnical Consulting and Testing Systems) pressure plate were performed in order to analyze the stability of unsaturated soil slopes. Based on the infiltration analysis which contains SWCC test result by the SEEP/W, it is shown that the increasing rate of the wetting band depth was decreased as the fines content and the relative density were increased. According to the stability analysis result of the unsaturated soil slopes through the SLOPE/W, it is found that the transition from the wetting band depth to the variation of strength parameters which affect the stability of unsaturated soil slopes appears to occur around $10\sim15%$ of clay contents in the mixtures.

Cyclic Shear Characteristics of Nakdong River Sand Containing Fines with Varying Plasticity (낙동강 모래에 포함된 세립분의 소성지수에 따른 반복전단 특성)

  • Park, Sung-Sik;Kim, Young-Su;Kim, Sung-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3C
    • /
    • pp.93-102
    • /
    • 2011
  • Most experimental studies on soil liquefaction are related to clean sands. However, soils in the field or reclaimed grounds commonly contain some amounts of silt and clay rather than clean sand only. Many researchers investigated the effect of fine contents on liquefaction resistance and mainly used non-plastic fines such as silts. In this study, 10% of plastic fines with various plasticity index (PI) such as 8, 18, 50, and 377 were mixed with wet Nakdong River sand and then loose, medium, and dense specimens were prepared by undercompaction method. A series of undrained cyclic triaxial tests were carried out by applying three different cyclic stress ratios. As a result, the liquefaction resistance tended to decrease as a PI of fines in the specimens with equal fine content increased. On the other hand, the difference between loose specimens with low and high plasticity fines was not clearly observed in terms of liquefaction resistance. However, in the case of dense specimens, liquefaction resistance decreased up to 40% as a plasticity of fines increased.

Soda Pulp Properties from Corn Stalk as Raw Material (옥수수 줄기를 원료로 제조한 소다 펄프의 특성)

  • Song, Woo-Yong;Lee, Kyu-seong;Lee, Jai-Sung;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.73-80
    • /
    • 2015
  • Corn stalk is the lignocellulosic biomass, which remain as leftover after harvesting. To use the corn stalk as raw material for paper industry, soda pulping was applied. In chemical compositional analysis, extractive contents of corn stalk (45.1%) was higher than hardwood. With corn stalk pith, soda pulp yield was 25.3% at 10.6 Kappa number, but 39.5% yield with 14.8 Kappa number for corn stalk rind. Higher extractives content in pith is one of the reason for lower pulp yield than rind. Pith pulp fibers had higher fines content than rind pulp. Pith parenchyma cell was removed as fines during pulping or washing process, which caused the lower yield. To use the corn stalks as a raw material for paper making, de-pith process is essential for higher pulp yield and longer pulp length.