• 제목/요약/키워드: fine topology

검색결과 29건 처리시간 0.026초

Topological Study of the Behavior of Inorganic Fine Powers and a Nanovesicle Hybridized Coating

  • Seo, Dong-Sung;Kim, Dong-Pyo;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권2호
    • /
    • pp.343-347
    • /
    • 2009
  • In this study, the surface of inorganic fine powders is hybridized with nanovesicles containing tocopheryl acetate prepared with hydrogenated lecithin via a coating process. From AFM and SEM analyses it is found that the surface of the nanovesicle-coated fine powders lost their traditional topology and improved in terms of their roughness, skewness, and kurtosis. In addition, TEM observations revealed the formation of a 5 nm thick coating layer on the surface of the fine powders. These hybridized powders, in which bioactive materials such as tocopheryl acetate can be embedded, can be employed as a part of a drug delivery system due to their special ability to control release rate and temperature selectivity. Physical properties of the powders, i.e., the different angle and friction coefficient, were excellent.

SPACE OF HOMEOMORPHISMS UNDER REGULAR TOPOLOGY

  • Mir Aaliya;Sanjay Mishra
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1299-1307
    • /
    • 2023
  • In this paper, we attempt to study several topological properties for the function space H(X), space of self-homeomorphisms on a metric space endowed with the regular topology. We investigate its metrizability and countability and prove their coincidence at X compact. Furthermore, we prove that the space H(X) endowed with the regular topology is a topological group when X is a metric, almost P-space. Moreover, we prove that the homeomorphism spaces of increasing and decreasing functions on ℝ under regular topology are open subspaces of H(ℝ) and are homeomorphic.

진동 특성을 고려한 마이크로 엑추에이터 판 스프링의 최적설계 (Optimal Design of Micro Actuator Plate Spring Considering Vibration Characteristic)

  • 이종진;이호철;유정훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.220-225
    • /
    • 2003
  • Recent issue of optical actuator is applying to mobile device. It leads actuator to become smaller than conventional type. This paper proposes the design of micro actuator plate spring and analysis of its vibration characteristic. Considering natural frequency of spindle motor, 1st and 2nd eigenfrequency of micro actuator must avoid its natural frequency. First, magnetic circuit is designed by using fine pattern coil and magnetic force is acquired by simulation program. Then, concept design is achieved by topology optimization. From concept design, micro actuator plate spring is embodied through DOE(design of experiment). Finally, considering vibration characteristic simultaneously, optimal plate spring design is determined by RSM(response surface method).

  • PDF

CFturbo 설계 및 Fine/Turbo 유동해석을 활용한 빠르고 효과적인 터보압축기의 개발 과정 확립 (SETUP OF RAPID AND EFFICIENT PROCESS OF TURBO-COMPRESSOR R&D WITH CFTURBO DESIGN AND FINE/TURBO CFD)

  • 김진권
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.129-130
    • /
    • 2010
  • Design of turbo-compressors has been considered to be a high-tech which only a few early industrialized countries could do efficiently since it requires not only deep understanding of high level gas dynamics and complex fluid dynamics but also accumulation of experiences in the feedback of expensive manufacturing and difficult testing to the design theory and empirical design coefficients. CFturbo is the turbomachinery design software which incorporates traditional well formulated German design technology and latest software technology of 3-dimensional graphics. Fine/Turbo is a powerful tubomachinery-oriented CFD package with quality structured grid topology templates for almost all the tubomachinery configurations for easy, fast and accurate CFD analysis. Rapid and effcient process off turbo-compressor R&D is setup with the combination of CFturbo and Fine/Turbo.

  • PDF

Secure and Fine-grained Electricity Consumption Aggregation Scheme for Smart Grid

  • Shen, Gang;Su, Yixin;Zhang, Danhong;Zhang, Huajun;Xiong, Binyu;Zhang, Mingwu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1553-1571
    • /
    • 2018
  • Currently, many of schemes for smart grid data aggregation are based on a one-level gateway (GW) topology. Since the data aggregation granularity in this topology is too single, the control center (CC) is unable to obtain more fine-grained data aggregation results for better monitoring smart grid. To improve this issue, Shen et al. propose an efficient privacy-preserving cube-data aggregation scheme in which the system model consists of two-level GW. However, a risk exists in their scheme that attacker could forge the signature by using leaked signing keys. In this paper, we propose a secure and fine-grained electricity consumption aggregation scheme for smart grid, which employs the homomorphic encryption to implement privacy-preserving aggregation of users' electricity consumption in the two-level GW smart grid. In our scheme, CC can achieve a flexible electricity regulation by obtaining data aggregation results of various granularities. In addition, our scheme uses the forward-secure signature with backward-secure detection (FSBD) technique to ensure the forward-backward secrecy of the signing keys. Security analysis and experimental results demonstrate that the proposed scheme can achieve forward-backward security of user's electricity consumption signature. Compared with related schemes, our scheme is more secure and efficient.

등가자화전류를 이용한 최적코일형상 설계방법 (Optimal Coil Configuration Design Methodology Using the Concept of Equivalent Magnetizing Current)

  • 김우철;김민태;김윤영
    • 대한기계학회논문집A
    • /
    • 제31권1호
    • /
    • pp.43-49
    • /
    • 2007
  • A new electric coil design methodology using the notion of topology optimization is developed. The specific design problem in consideration is to find optimal coil configuration that maximizes the Lorentz force under given magnetic field. Topology optimization is usually formulated using the finite element method, but the novel feature of this method is that no such partial differential equation solver is employed during the whole optimization process. The proposed methodology allows the determination of not only coil shape but also the number of coil turns which is not possible to determine by any existing topology optimization concept and to perform single coil strand identification algorithm. The specific applications are made in the design of two-dimensional fine-pattern focusing coils of an optical pickup actuator. In this method, the concept of equivalent magnetizing current is utilized to calculate the Lorentz force, and the optimal coil configuration is obtained without any initial layout. The method is capable of generating the location and shape of turns of coil. To confirm the effectiveness of the proposed method in optical pickup applications, design problems involving multipolar permanent magnets are considered.

X-Band 6-Bit Phase Shifter with Low RMS Phase and Amplitude Errors in 0.13-㎛ CMOS Technology

  • Han, Jang-Hoon;Kim, Jeong-Geun;Baek, Donghyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권4호
    • /
    • pp.511-519
    • /
    • 2016
  • This paper proposes a CMOS 6-bit phase shifter with low RMS phase and amplitude errors for an X-band phased array antenna. The phase shifter combines a switched-path topology for coarse phase states and a switch-filter topology for fine phase states. The coarse phase shifter is composed of phase shifting elements, single-pole double-throw (SPDT), and double-pole double-throw (DPDT) switches. The fine phase shifter uses a switched LC filter. The phase coverage is $354.35^{\circ}$ with an LSB of $5.625^{\circ}$. The RMS phase error is < $6^{\circ}$ and the RMS amplitude error is < 0.45 dB at 8-12 GHz. The measured insertion loss is < 15 dB, and the return losses for input and output are > 13 dB at 8-12 GHz. The input P1dB of the phase shifter achieves > 11 dBm at 8-12 GHz. The current consumption is zero with a 1.2-V supply voltage. The chip size is $1.46{\times}0.83mm^2$, including pads.

광픽업 구동기 코일최적설계 (Optimal Design of the Optical Pickup Actuator Coil)

  • Yoon Young, Kim;Woochun, Kim;Jae Eun, Kim
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.352-355
    • /
    • 2004
  • The objective of this work is to develop a new design method to find optimal coils, especially the optimal coil configuration of an optical pickup actuator. In designing actuator coils, the developed Lorenz force in the coils along the desired direction should be made as large as possible while forces and torques in other directions should be made as small as possible. The design methodology we are developing is a systematic approach that can generate optimal coil configurations for given permanent magnet configurations. To consider the best coil configuration among all feasible coil configurations, we formulate the design problem as a topology optimization of a coil. The present formulation for coil design is noble in the sense that the existing topology optimization is mainly concerned with the design of yokes and permanent magnets and that the optimization of actuator coils is so far limited within shape or size optimization. Though the present design methodology applies to any problem, the specific design example considered is the design of fine-pattern tracking and focusing coils.

  • PDF

위상-치수 최적화에 의한 마이크로 구동기 판 스프링의 설계 (Plate Spring Design of a Micro Actuator Using Topology-parameter Optimization)

  • 이종진;이호철;유정훈
    • 한국소음진동공학회논문집
    • /
    • 제17권12호
    • /
    • pp.1246-1253
    • /
    • 2007
  • The recent issue of optical pickup actuators is to apply optical storage devices to mobile devices such as a cellular phone and PDA. It requires actuators to become smaller than conventional types. As the size becomes smaller, the magnetic force is reduced and the assembly of optical pickup actuators becomes more difficult. In addition, its dynamic characteristics are changed. In this paper, methods to improve magnetic forces and dynamic characteristics are suggested and the optimal result of the plate spring design is obtained. A diamond shape magnet and the fine pattern coil (FPC) are used to improve magnetic forces and damping elements are attached to decrease the peak magnitude of the mode instead of using structural damping, mostly for the purpose of improving the accuracy of the finite element simulation. To get more stable dynamic characteristics than conventional ones, a plate spring is applied to the optical pickup actuator and it is optimized with topology and parameter optimization to obtain the concept and the detail design, respectively.

Pad$\acute{e}$ 근사법을 이용한 Zwicker 라우드니스의 계산과 최적화 (Computation of Zwicker's loudness and design optimization with Pad$\acute{e}$ approximation)

  • 국정환;;왕세명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.279-284
    • /
    • 2011
  • The calculation of Zwicker's loudness which is needed for multiple frequency response with a fine frequency resolution using the finite element (FE) procedure usually requires significant computation time since a numerical solution must be obtained for each considered frequency. Furthermore, if the analysis is the basis for an iterative optimization procedure this approach imposes high computational cost. In this work, we present an efficient approach for obtaining Zwicker's loudness via the Pad$\acute{e}$ approximants and applying in an acoustical topology optimization procedure. The paper is focused on an efficient and accurate calculation of Zwicker's loudness, design sensitivity analysis, and the acoustical topology optimization method by using Pad$\acute{e}$ approximants. The paper compares the efficient algorithm to results obtained by a standard FEM. Comparison are made both in terms of accuracy and in terms of CPU-times needed for the calculation.

  • PDF