• Title/Summary/Keyword: fine particulate matter

Search Result 280, Processing Time 0.029 seconds

Fine particulate Judgment based on Fuzzy Inference System (FUZZY 추론 시스템 기반 미세먼지 판단)

  • Hong, You-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.127-133
    • /
    • 2020
  • The international cancer research institute under the WHO designated fine dust as a first-class carcinogen. Particular matter refers to dust that is small enough to be invisible and floating in the air. Particular matter is mainly emitted from the combustion process of fossil fuels such as coal and oil, and is a risk factor that can cause lung disease, pneumonia, and heart disease. The Ministry of Environment recently analyzed the output data of 10 fine dust measuring stations and, as a result, announced that about 60% had an error that the existing atmospheric measurement concentration was higher. In order to accurately predict fine dust, the wind direction and measurement position must be corrected. In this paper, in order to solve these problems, fuzzy rules are used to solve these problems. In addition, in order to calculate the fine particulate sensation index actually felt by pedestrians on the street, a computer simulation experiment was conducted to calculate the fine particulate sensation index in consideration of weather conditions, temperature conditions, humidity conditions, and wind conditions.

Size Distribution Characteristics of Particulate Matter Emitted from Cooking (조리과정에서 생성된 미세먼지의 크기분포 특성)

  • Joo, Sang-Woo;Ji, Jun-Ho
    • Particle and aerosol research
    • /
    • v.16 no.1
    • /
    • pp.9-17
    • /
    • 2020
  • The characteristics of particulate matter made from daily cooking at a Korean residential apartment house with three dwellers had been investigated for about 3 months. All data were recorded by an optical particle counter every minute at the kitchen. Types of cooking such as boiling, frying, and grilling that performed in the house were listed. Boiling only was used in 32% cases among total 234 meals. Frying and grilling were 14% and 11%, respectively. From an initial indoor particulate matter smaller than 10 ㎛ in diameter, the increases due to cooking are reported by size. In case of boiling, PM at 1-10 ㎛ size and under 1 ㎛ size little increased. Normally, particles from oil or combustion in a process of frying or grilling increased indoor PM. In a case of grilling, particle mass concentration in a region of 1-10 ㎛ in diameter increased as much as 295 ㎍/㎥. Mass concentration of particles smaller than 1 ㎛ increased as much as 33 ㎍/㎥.

Evaluation on the Expected Purification Efficiency of Air Ion and Analysis on the Generated Amount of Negative Air Ions by Plants for the Purification of Particulate Matter in Air (지표대기 미세먼지 정화를 위한 식물체 음이온 발생량 분석 및 음이온의 미세먼지 기대정화지수 평가)

  • Oh, Deuk-Kyun;Ju, Jin-Hee
    • Journal of Environmental Science International
    • /
    • v.29 no.6
    • /
    • pp.623-631
    • /
    • 2020
  • This study analyzes the effect of negative air ions on the concentration of airborne particulate matter and evaluates the expected purification efficiency of open spaces for particulate matter by investigating the amount of negative air ions generated by plants. This study establishes a negative air ion generation treatment environment, plant environment, and control environment to measure the purification efficiency of particulate matter under the conditions of each, analyzing the expected purification efficiency by designing a particulate matter purification model. Results show that the amount of generated negative air ion according to environment was negative air ion generation treatment environment > plant environment > control environment; this order also applies to the particulate matter purification efficiency. Moreover, it took 65 min for the negative ion generation treatment environment, 90 min for the plant environment, and 240 min for the control environment to reach the standard expected purification efficiency of particulate matter concentration of 960 mg/㎥ for PM10. For PM2.5, with the designated maximum concentration of 700 mg/㎥, it took 60 min for the negative ion generation treatment environment, 80 min for the plant environment, and more than 240 min for the control environment. Based on these results, the expected purification efficiency compared to the control environment was quadrupled in the negative ion generation treatment environment and tripled in the plant environment on average.

The Impact of Particulate Matter and Public Awareness on the Incidence of Asthma (미세먼지 농도 및 대중의 인식도가 천식질환 발생빈도에 미치는 영향 분석)

  • Ki-Kwang Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.32-38
    • /
    • 2023
  • This study investigates the influence of particulate matter concentrations on the incidence of asthma, focusing on the delayed onset of symptoms and subsequent medical consultations. Analysis incorporates a four-day lag from the initiation of fine dust exposure and compares asthma patterns before and after the World Health Organization's (WHO) classification of fine dust as a Group 1 carcinogen in November 2013. Utilizing daily PM10 data and asthma-related medical visit counts in Seoul from 2008 to 2016, the study additionally incorporates Google search frequencies and newspaper article counts on fine dust to assess public awareness. Results reveal a surge in search frequencies and article publications after WHO announcement, indicating heightened public interest. To standardize the long-term asthma occurrence trend, the daily asthma patient numbers are ratio-adjusted based on annual averages. The analysis uncovers an increase in asthma medical visits 2 to 3 days after fine dust events. Additionally, greater public awareness of fine dust hazards correlates with a significant reduction in asthma occurrence after such events, even within 'normal' fine dust concentrations. Notably, behavioral changes, like limiting outdoor activities, contribute to this decrease. This study highlights the importance of analyzing accumulated medical data over an extended period to identify general public behavioral patterns, deviating from conventional survey methods in social sciences. Future research aims to extend data collection beyond 2016, exploring recent trends and considering the potential impact of decreased fine dust awareness amid the COVID-19 pandemic.

An Analysis of Characteristics of Particulate Matter Exhausted from Diesel Locomotive Engines (디젤기관차 엔진에서 배출되는 입자의 특성분석)

  • 박덕신;김태오;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.2
    • /
    • pp.133-143
    • /
    • 2003
  • Numerous evidence have been reported that fine particulate matters can play an important role in threatening human health. Recently concerns on fine particle pollution from various engines may require re-examination of particulate emission standards. The particles emitted by most diesel engines are mainly divided into their size ranges such as Dp< 50 nm and 50 nm< Dp< 1,000 nm. In this work, the number concentration and the size distribution of fine particles emitted from an exhaust manifold of a railroad diesel engine were measured under load test conditions using a scanning mobility particle sizer (SMPS). The fine particles observed were within the range of 7 to 304 nm under different load conditions with two different dilution ratios. The fine particles exhibited unique patterns showing bimodal shapes in size distribution.

Size Distribution Characteristics of Water-soluble Ionic Components in Airborne Particulate Matter in Busan (부산 도심지역 대기중 입자상물질의 크기분포에 따른 수용성 이온성분의 특성)

  • Park, Gee-hyeong;Lee, Byeong-kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.287-301
    • /
    • 2015
  • This study was conducted to investigate size distribution characteristics of water-soluble ionic components in the airborne particulate matter (PM) collected from an urban area in Busan using a MOUDI cascade impactor from March to October 2010. The inorganic constituents in the fine particles (${\leq}1.8{\mu}m$) predominantly consisted of sulfate, nitrate, ammonium, and potassium. Sulfate and ammonium concentrations showed a high correlation and similar equivalent concentrations in the fine modes including $0.18{\sim}0.32{\mu}m$, $0.32{\sim}0.56{\mu}m$, and $0.56{\sim}1.0{\mu}m$. This indicates that the main chemical component in the fine particles would be forms of ammonium sulfate such as $(NH_4)_3H(SO_4)_2$, $(NH_4)_2SO_4$, and $(NH_4)HSO_4$. Back trajectory analysis showed that relatively higher concentrations of ammonium, nitrate, and sulfate in the fine mode, compared to the coarse mode, are caused both by domestic sources and long-range transports originated from China continent. High concentration episodes of PM both in the fine mode and the coarse mode were attributed both by anthropogenic sources, such as ship emissions and traffic emissions, and by natural sources such as seawater (sea salt), respectively.

Visibility Impairment by Atmospheric Fine Particles in an Urban Area

  • Kim, Young J.;Kim, Kyung W.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E3
    • /
    • pp.99-120
    • /
    • 2003
  • Visibility impairment in an urban area is mainly caused by airborne fine particulate matters. Visibility in a clean air environment is more sensitive to the change of PM$_{2.5}$ particle concentrations. However, a proportionally larger reduction in fine particle concentration is needed to achieve a small increment of visibility improvement in polluted areas. Continuous optical monitoring of atmospheric visibility and extensive aerosol measurements have been made in the urban atmosphere of Kwangju, Korea. The mean for fine particulate mass from 1999 to 2002 at Kwangju was measured to be 23.6$\pm$20.3 $\mu\textrm{g}$/㎥. The daily average seasonal visual range was measured to be 13.1, 9.2, 11.0, and 13.9 km in spring, summer, fall, and winter, respectively. The mean light extinction budgets by sulfate, nitrate, organic carbon, and elemental carbon aerosol were observed to be 27, 14, 22, and 12%, respectively. It is highly recommended that a new visibility standard and/or a fine particle standard be established in order to protect the health and welfare of general public. Much more work needs to be done in visibility studies, including long-term monitoring of visibility, improvement of visibility models, and formulating integrated strategies for managing fine particles to mitigate the visibility impairment and climate change.e.

Performance Evaluation of Window Ventilation System for Reducing Indoor particulate matter (실내 미세먼지 저감을 위한 창호형 환기시스템 성능평가)

  • Yang, Young Kwon;Park, Jin Chul
    • Land and Housing Review
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • Indoor particulate matter(PM) is a carcinogen and needs to be removed and managed. It is generally reduced and removed through ventilation and filtration. Owing to the recent occurrence of high-concentration fine dust and yellow dust in the atmosphere, however, it is difficult to expect the purification of indoor air through the simple introduction of the outside air. For residential buildings, in particular, they are highly dependent on natural ventilation but the lack of natural ventilation is worsening because concerns over the inflow of external pollutants are increasing. Therefore, this study designed and manufactured a window ventilation system that does not require a duct to improve the maintenance and management problems of general ventilation system, and constructed indoor PM concentration change data through performance evaluation.

Particulate Matter Monitoring System Based on IoT for Construction Sites (IoT 기반의 건설현장 미세먼지 모니터링 시스템 개발에 관한 연구)

  • Kim, Hyunsik;Tae, Sungho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.40-41
    • /
    • 2021
  • Recently, particulate matter(PM) caused by internal factors such as industrialization and urbanization as well as external factors such as Asian dust is a serious problem in Korea. In particular, while the emission due to construction appears to be very serious among the internal factors, it is necessary to manage PM in consideration of the characteristics of construction sites. Accordingly, in this study, a PM management system suitable for construction sites was developed to reduce civil complaints caused by PM and to minimize damage to field workers and nearby residents by supporting the fine dust management system of the state and local governments. The factors to be considered when measuring PM due to the specificity of construction sites were considered, and the system components were developed based on the considerations. As a result, an IoT based construction site PM monitoring system (CPMS) that integrates each component was established.

  • PDF