• Title/Summary/Keyword: fine ginseng root

Search Result 64, Processing Time 0.022 seconds

Residual Solvents and Mineral Contents in Ginseng Extracts with Different Extracting Conditions (추출조건에 따른 인삼농축액 중의 잔류용매 및 무기물 함량)

  • Lee, Seon-Hwa;Kim, Woo-Seong;Kim, Yong-Mu;Hong, Yeong-Pyo;Ahn, Yeong-Soon;Park, Heung-Jai;Kim, Ok-Hee
    • Journal of Environmental Science International
    • /
    • v.16 no.1
    • /
    • pp.39-44
    • /
    • 2007
  • This study was conducted to investigate the contents of residual solvents and mineral components(11 kinds) in ginseng extracts with different extracting conditions(5 types) and commercial ginseng extract products(domestic, imported). Fine root was extracted with solution having various ethanol concentration after hexane treatment. Among 5 type extracts, residual solvent(hexane) was detected ginseng extracts treated ethanol mixed with hexane. But extracts that dried after soaked in hexane wasn't detected hexane. Mineral components(Al, Mn, Fe, Cu and Zn) were detected in fine root and 5 types of extracts. The contents of mineral components between fine root and extracts with various extracting conditions were similar, however, extracts that dried after soaked in hexane showed the lower amount in Al, Fe, Pb than the others. In comparison with commercial ginseng ex-tract products(domestic, imported), the distribution pattern of mineral was similar but the contents were a little different.

A Convergent Study on Applying a fine bubble to ginseng seedling cultivation (인삼 종묘삼 재배 시 파인버블을 적용하는 융합적 연구)

  • Ahn, Chul-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.191-196
    • /
    • 2017
  • This study was conducted to investigate the effect of fine bubble water treatment on the growth of ginseng seedlings. The growth of ginseng seedlings which were treated with general water and fine bubble water was investigated. The above ground part, the growth of leaf was increased by about 10% and the growth of the stem was about 6%, as the ginseng seedlings which were treated with fine bubble water comparing to the ginseng seedlings treated with general water. Root length was increased about 5%, root width was increased about 8%, roots weight was increased about 9%, and dry weight was increased about 7%. This is not because the whole root growth was increased, but the main root growth was increased about 7%. These results suggested that the physical properties of the fine bubble water stimulated the growth of ginseng seedlings. These results are initial study in the case of ginseng seedlings. Therefore, it can be applicable to the 3-5 years old ginseng plants. Further research will be needed to find out the optimal cultivation condition by controlling the dissolved oxygen amount according to the soil condition and the research applied to the ginseng seedlings.

Effect of White, Taegeuk, and Red Ginseng Root Extracts on Insulin-Stimulated Glucose Uptake in Muscle Cells and Proliferation of β-cells

  • Cha, Ji-Young;Park, Eun-Young;Kim, Ha-Jung;Park, Sang-Un;Nam, Ki-Yeul;Choi, Jae-Eul;Jun, Hee-Sook
    • Journal of Ginseng Research
    • /
    • v.34 no.3
    • /
    • pp.192-197
    • /
    • 2010
  • Recent studies have indicated that $\beta$-cell dysfunction and insulin resistance are important factors in the development of type 2 diabetes. The present study investigated the effect of extracts from different parts of white, Taegeuk, and red ginseng root on insulin-stimulated glucose uptake in muscle cells and proliferation of $\beta$-cells. Extracts of the fine roots of Taegeuk ginseng significantly enhanced glucose uptake compared with the control. White ginseng lateral root extracts enhanced insulin-induced glucose uptake. Proliferation of $\beta$-cells was significantly increased by Taegeuk ginseng main and lateral root extracts and by red ginseng lateral and fine root extracts. In conclusion, different root parts of white, Taegeuk, and red ginseng differentially affect glucose uptake and pancreatic $\beta$-cell proliferation.

Distribution and Relation of Mineral Nutrients in Various Parts of Korea Ginseng (Panax ginseng C. A. Meyer) (고려인삼의 부위간 무기성분 분포 및 상관관계)

  • Lee, Chong-Hwa;Shim, Sang-Chill;Park, Hoon;Han, Kang-Wan
    • Journal of Ginseng Research
    • /
    • v.4 no.1
    • /
    • pp.55-64
    • /
    • 1980
  • The distribution pattern of mineral nutrients, among various Parts of Korea ginseng (Panax ginseng C.A. Meyer) was investigated to understand ginseng nutrition by simple correlation analysis. Five·year old ginseng plants grown under four different nutritional environments were sampled and separated into leaf, petiole, stem, rhizome, cortex and epidermis of tap foot, central part of tap root, cortex and epidermis of lateral root, central part of lateral root, fine root in the middle of truly, for chemical analysis. Between mineral nutrients in root, N and P showed highly significant positive correlation each other and with Mg and Cu while all other elements (K, Ca, Mg, Fe, Mn, Zn, Cu, B) showed highly significant positive correlation each other. In shoot, number of mineral nutrient pairs haying significant relation was much less than in root. (Negative: P with Ca or B, K with N, Fe, Mn or Cu, Positive: N with Mg, Fe, Mn or Cu, K with Zn, Ca with Mg, Zn, or B, Fe Mn Cu each other, Mn with B.) The number of pairs having significant correlation in whole plant was approximately the same as the number in root but three of them showed significant negative correlation. The distribution pattern similarity of mineral contents among various parts was also discussed in relation to physiological significance in Korea ginseng plant.

  • PDF

Effect of Fine Bubble Treatment on the Growth of Two-year-old Ginseng (2년 근 인삼재배 시 파인버블(Fine bubble)처리가 생육에 미치는 영향)

  • Ahn, Chul-Hyun
    • Korean Journal of Plant Resources
    • /
    • v.30 no.5
    • /
    • pp.549-555
    • /
    • 2017
  • The production of ginseng cultivation is decreasing due to shortage of cultivated land and climate change, so additional methods are needed. Therefore, the physiological and morphological characteristics of finebubble were analyzed by applying them to ginseng cultivation which is the representative crop of Korea. The application of fine bubble water to 2 year old ginseng showed that stem length and leaf were increased, and weight increased as main root increased in root. In particular, it is shown that the weight of roots increases with the increase of leaf size. This is because the total chlorophyll content is high and it is judged to be related to the increase of photosynthesis efficiency. When the results of this study were confirmed, it was confirmed that ginseng cultivation using fine bubbles showed no inhibition of growth of ginseng. According to the results of physiological characteristics and subdividing results, It was confirmed that the growth of about 10% to 15% of the growth was increased and that the growth of ginseng was increased by applying the fine bubble when growing ginseng.

Comparison of Ginsenoside Content According to Age and Diameter in Panax ginseng C. A. Meyer Cultivated by Direct Seeding (직파 4 ~ 6년생 인삼의 연근 및 직경에 따른 Ginsenoside 함량 비교)

  • Han, Jin Soo;Tak, Hyun Seong;Lee, Gang Seon;Kim, Jung Sun;Choi, Jae Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.3
    • /
    • pp.184-190
    • /
    • 2013
  • This study was carried out to investigate ginsenoside content in different root parts and the correlation between root diameter and ginsenoside composition of Panax ginseng C. A. Meyer cultivated by direct seeding. The unit contents of ginsenoside were 29.65, 28.76, 26.34 mg/g, respectively in 4, 5, 6 years old. However, the total contents of ginsenoside were 431.97, 606.56, 657.80 mg/root, respectively. Total ginsenoside content of fine root was higher than that of main root and lateral root. These tendencies were related to decrease by the increase of root diameter. When diameter of main root and lateral root were the same in different ages, the total ginsenoside content was higher in the order of 4 > 5 > 6 years old roots. Except for ginsenoside-Rg1, other ginsenosides components (PD/PT and total ginsenosides) had highly negative correlation with the root diameter within whole root, main root, lateral root and fine root, which indicated that ginsenoside content is correlated to root diameter. As results, it is suggested that ginsenoside content can be predicted.

Ginsenosides analysis of New Zealand-grown forest Panax ginseng by LC-QTOF-MS/MS

  • Chen, Wei;Balan, Prabhu;Popovich, David G.
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.552-562
    • /
    • 2020
  • Background: Ginsenosides are the unique and bioactive components in ginseng. Ginsenosides are affected by the growing environment and conditions. In New Zealand (NZ), Panax ginseng Meyer (P. ginseng) is grown as a secondary crop under a pine tree canopy with an open-field forest environment. There is no thorough analysis reported about NZ-grown ginseng. Methods: Ginsenosides from NZ-grown P. ginseng in different parts (main root, fine root, rhizome, stem, and leaf) with different ages (6, 12, 13, and 14 years) were extracted by ultrasonic extraction and characterized by Liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Twenty-one ginsenosides in these samples were accurately quantified and relatively quantified with 13 ginsenoside standards. Results: All compounds were separated in 40 min, and a total of 102 ginsenosides were identified by matching MS spectra data with 23 standard references or published known ginsenosides from P. ginseng. The quantitative results showed that the total content of ginsenosides in various parts of P. ginseng varied, which was not obviously dependent on age. In the underground parts, the 13-year-old ginseng root contained more abundant ginsenosides among tested ginseng samples, whereas in the aboveground parts, the greatest amount of ginsenosides was from the 14-year-old sample. In addition, the amount of ginsenosides is higher in the leaf and fine root and much lower in the stem than in the other parts of P. ginseng. Conclusion: This study provides the first-ever comprehensive report on NZ-grown wild simulated P. ginseng.

Comparison of Growth Characteristics and Ginsenoside Content of Ginseng (Panax ginseng C. A. Meyer) Cultivated with Greenhouse and Traditional Shade Facility (비닐하우스와 관행재배 인삼의 생육특성 및 진세노사이드 함량 비교)

  • Lee, Sung-Woo;Kim, Gum-Sook;Hyun, Dong-Yun;Kim, Yong-Burm;Kim, Jang-Wook;Kang, Seung-Won;Cha, Seon-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.3
    • /
    • pp.157-161
    • /
    • 2011
  • Growth characteristics, root yield and ginsenoside contents of 3-year-old ginseng in greenhouse shaded by $30^{\circ}$ sloped-curtain made of aluminum were compared to traditional shade facility in order to develop cultural practice for organic ginseng. Light transmittance ratio in greenhouse with $30^{\circ}$ sloped-curtain shade was distinctly lower than that of traditional shade from sunrise to 9 a.m., while its ratio in greenhouse was higher than traditional shade since 9 a.m. due to the reflection of light. Air temperature of greenhouse was $1.3^{\circ}C$ higher than that of traditional shade on the first ten days of August due to more reflected light. Root yield of greenhouse was 44% higher than that of traditional cultivation because of the inflow of reflected light and the decrease of disease of Alternaria and Anthracnose by blocking rainfall. Dry matter partitioning ratio of rhizome and lateral root were increased in ginseng cultivated at greenhouse due to longer survival time in leaf than traditional cultivation. Total ginsenoside contents cultivated at greenhouse was decreased in the part of taproot, while it was increased in the part of lateral and fine root compare to traditional cultivation. Individual ginsenoside contents between greenhouse and traditional cultivation showed significant difference more frequent in fine root than taproot and lateral root. Total ginsenoside contents including $Rb_1$, $Rb_2$, Rc, Rd, Re, Rf, $Rg_1$, and $Rg_2$ in whole root of 3-year-old ginseng did not showed significant difference by greenhouse and traditional cultivation.

Antioxidant and Antimicrobial Activities of Various Solvent Fractions of Fine Ginseng Root

  • Lim, Jae-Kag;Kang, Ho-Jin;Kang, Suk-Nam;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.513-518
    • /
    • 2009
  • This study was carried out to investigate the changes of yield, total phenolics, saponin content and composition, antimicrobial, and antioxidant activities of various fractions of fine ginseng root (Panax ginseng C.A. Mayer) by maceration method in the order of increasing polarity (hexane, chloroform, ethyl acetate, butanol, and water). Butanol fraction showed the highest total saponin content compare to other fractions. Hexane fraction could harvest significantly high ginsenoside Rg2, Rg1, and Rf (p<0.05). And the contents of ginsenoside Rh1, Rg3, and Rg1 showed relatively higher in the fraction of ethyl acetate than other fractions. The system of hexane-chloroform-ethyl aceate-butanol showed relatively high content of ginsenoside Re, Rd, Rc, Rb3, and Rb1. However, the last fraction of water still remained lots of Rb2 content. The fraction of water was the highest phenolics. The 1,1-diphenyl-2-picryhydrazil, superoxide, and hydroxyl radical scavenging activity of water fraction was higher than the other fractions. In antimicrobial activity, the fraction of hexane showed relatively high antimicrobial activity against Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus, Bacillus cereus, and Escherichia coli. And the fractions of the chloroform and ethyl acetate showed higher antimicrobial activities than the other samples in against P. aeruginosa and S. typhimurium.

Patterns and Contents of Ginsenoside in Normal Root Parts and Hairy Root Lines of Panax ginseng C. A. Meyer (인삼 뿌리 부위별 및 모상근 세포주간 ginsenoside 양상 및 함량)

  • 양덕춘;양계진
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.485-489
    • /
    • 2000
  • The patterns and contents of ginsenosides were examined in normal root parts and hairy root lines of Panax ginseng C. A. Meyer. Ginsenoside-Rb$_1$, -Rb$_2$, -Rc, -Rd, -Re, -Rf, -Rg$_1$, -Rg$_2$ were detected in normal roots and hairy roots of ginseng. The patterns and contents of ginsenosides in that were very difference each other. The contents of total ginsenoside of hairy root (KGHR-1) was 17.42 mg/g dry wt, it's highest compared to others. Ginsenoside contents of hairy root (KGHR-1) was higher on ginsenoside-Rd, Rg$_1$, KGHR-5 was higher on ginsenoside-Rb$_1$, Rg$_1$, and KGHR-8 was higher on ginsenoside-Rd, Re than others. The contents of total ginsenosides on 6 years old ginseng cultured in the field were high in the order of main root, lateral root and fine roots, and content of ginsenosides in fine roots was 3.2 times higher than that in main root. The ratio of ginsenoside-Rg$_1$to total ginsenosides were about 3.43%, 8.68% and 14.18% respectively on fine root, lateral root and main root, it's very lower than that in hairy roots. It is suggested that specific ginsenosides can be produce in cultures of ginseng hairy roots.

  • PDF