• Title/Summary/Keyword: fine and coarse particles

Search Result 270, Processing Time 0.037 seconds

Characteristics of Concentration and Size Distribution of PAHs of Total Suspended Particulates in urban air (도시대기부유분진중 다환방향족 탄화수소의 농도 및 입경분포 특성)

  • 조기철;이승일;김달호;허귀석;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.57-63
    • /
    • 1994
  • In order to comprehension of the behaviour of PAHs in air which is known as carcinogens and/or mutagens suspended Particulates in ambient air were collected by Anderson air sampler from 1992. 6 to 1993. 5 in Seoul. Ten species of PAHs( Phen, An, Fl, R, Py, BaAn, BaP, Chry, BeP, DiB(a, h)An, I123p) were analyzed to understand monthly variations of PAHs distribution of PAHs concentration according to particle size, and correlation between PAHs and independent charactierstics of PAHs The highest concentration of TSP was 155.58$\mu\textrm{g}$/㎥ in May and the lowest was 60$\mu\textrm{g}$/㎥ in August. Concentration of TSP was more affected by coarse particles in spring, otherwise which was more affected by fine particles in winter. According to results of anaylsis of samples that were collected by Anderson air sampler, concentration of PAHs was more high in winter than that in summer. In almost samples collected by Anderson air sampler, concentration of PAHs was more high in coarse particles than in fine particles, but BaP well known as carcinogenic matter had more high concentration in fine particles(56-97.5%) than that in coarse particles(2.5-46%). Correlation between concentrations of TSP and PAHs was more high in fine Particles than in coarse Particles. Both fine particles and coarse particles have negative correaltion with radiation.

  • PDF

Effect of Wood Particle Size on Physical and Mechanical Composites by Nonwoven Web Process

  • Chae, Shoo Geun;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.2 s.130
    • /
    • pp.40-55
    • /
    • 2005
  • This study was carried out to discuss the feasibility of wood and plastic wastes as the raw materials for wood particle-plastic composites. For this purpose, composites were manufactured from coarse and fine wood particles and polypropylene fibers by nonwoven web process. And the effect of wood particle size on the performance of the composites were analyzed according to ASTM D 1037-93. In the physical properties of composites, water absorption decreased with the increase of target density and polypropylene fiber content. And the composites with fine wood particles appeared to have slightly lower water absorption than those with coarse wood particles. Thickness swelling did not vary significantly with the increase of target density but increased with the increase of wood particle content. And the composites with fine wood particles were significantly lower in thickness swelling than those with coarse wood particles. In the mechanical properties of composites, dry and wet MOR showed the increasing tendency with the increase of polypropylene fiber content and target density. Dry and wet MOE showed the increasing tendency with the increase of target density but only wet MOE exhibited the increasing tendency with the increase of polypropylene fiber content. Composites with fine wood particles appeared to be generally higher in wet MOR and MOE than those with coarse wood particles. In conclusion, composites with fine wood particles showed generally higher performance than those with coarse ones. Also, composites were significantly superior to control particleboards in the performance, especially in water absorption and thickness swelling.

Seasonal Size Distribution of Atmospheric Particles in Iksan, Korea

  • Kang, Gong-Unn;Kim, Nam-Song;Rhim, Kook-Hwan
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.6
    • /
    • pp.543-555
    • /
    • 2006
  • During a twenty-day period in 2005, a nine-stage Andersen cascade impactor was used to determine the seasonal size distribution of atmospheric particles and its inorganic ion species sampled for 24hr in Iksan city, located southwest of the Korean peninsula. Samples were analyzed for major water-soluble ion species using Dionex-100 ion chromatograph. Average fine and coarse mass concentrations of atmospheric particles were, respectively, 31.4 and $82.6{\mu}g\;m^{-3}$ in spring and 35.8 and $73.4{\mu}g\;m^{-3}$ in fall-winter during the sampling period of 2005, while measurements of 69.8 and 9.9 were obtained in the sampling period of summer, The size distribution of particulate mass concentration during the non-Asian dust period was generally bimodal, whereas the size distribution of particulate mass concentration during the Asian dust period was unimodal due to the significant increase of coarse particles, which originated from long-range transport of soil dust particles from loess regions of the Asian continent. Among ionic species, $SO{_4}^{2-},\;NH{_4}^+,\;K^+$ were mainly distributed in fine particles due to their characteristics of emission sources and gas-to-particle conversion, while $Na^+,\;Mg^{2+}\;and\;Ca^{2+}$ were dominantly in coarse particles. However, $NO_3{^-}\;and\;Cl^-$ were distributed in both coarse particles and fine particles. Although $SO{_4}^{2-}$ was mainly distributed in fine particles, the size distributions of $SO{_4}^{2-}$ in coarse mode were significantly increased during the Asian dust events compared to those during the non-Asian dust period. $Ca^{2+}$ showed the most abundant species in the atmospheric particles during the Asian dust period. $NH{_4}^+$ was found to mainly exist as $(NH_4)_2SO_4$ in fine particles.

A numerical analysis of the equivalent skeleton void ratio for silty sand

  • Dai, Bei-Bing;Yang, Jun;Gu, Xiao-Qiang;Zhang, Wei
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.19-30
    • /
    • 2019
  • Recent research on the behavior of silty sand tends to advocate the use of equivalent skeleton void ratio to characterize the density state of this type of soil. This paper presents an investigation to explore the physical meaning of the equivalent skeleton void ratio by means of DEM simulations for assemblies of coarse and fine particles under biaxial shear. The simulations reveal that the distribution pattern of fine particles in the soil skeleton plays a crucial role in the overall macroscopic response: The contractive response observed at the macro scale is mainly caused by the movement of fine particles out of the force chains whereas the dilative response is mainly associated with the migration of fine particles into the force chains. In an assembly of coarse and fine particles, neither all of the fine particles nor all of the coarse ones participate in the force chains to carry the external loads, and therefore a more reasonable definition for equivalent skeleton void ratio is put forward in which a new parameter d is introduced to take into account the fraction of coarse particles absent from the force chains.

Performance Evaluation of Gas Cleaning Industrial Filters using a Bi-Modal Test Aerosol for Dust Loading Studies

  • Lee, Jae-Keun;Kim, Seong-Chan;Benjamin Y.H. Liu
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.131-137
    • /
    • 1996
  • Typical size distribution of emission particulates is bi-modal in shape with particles in the fine mode (< 2.0 $\mu\textrm{m}$) and the coarse mode. An experimental study of pressure drop across the industrial gas cleaning filters has been conducted using particle mixture of fine alumina and coarse Arizona dusts with a rotating aerosol disperser to generate the bi-modal test aerosol. Pressure drop increased linearly with increasing mass loading. The pressure drop was found to be strongly dependent upon the mass ratio of fine to coarse particles. The smaller the mass ratio of fine to coarse particles and the higher face velocity are, the faster pressure drop rises. The fine particles and the greater inertia of the particle moving fast would cause a denser cake formation on the filter surface, resulting in a greater specific resistance to the gas flow.

  • PDF

A Review on the Effects of Fine Particle Content on Shear Strength of Coarse Geomaterials (세립분 함유율이 조립재료의 전단강도에 미치는 영향에 관한 기초적 검토)

  • 신동훈;이경필;구방서
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.861-866
    • /
    • 2003
  • While coarse geomaterials with abundant fine particles are common, comparatively little information is available to know their engineering behaviour. In this study, the effects of fine particle content of coarse geomaterials on engineering properties, such as shear strength, deformability and permeability were investigated. It was known through large triaxial compression tests that when they are compared with good rock materials, the rock materials with abundant fine particles have different compaction characteristics, low shear strength, low stiffness, and low permeability.

  • PDF

Characterization and source apportionment by factor analysis of water soluble ions in atmospheric particles in Cheonan, Korea (천안시 대기 입자 중 수용성 이온성분의 계절적 특성 및 요인분석을 통한 오염기여도 평가)

  • Oh, Se-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1020-1026
    • /
    • 2011
  • Seasonal characteristics of water soluble ions in atmospheric particles in Cheonan were studied between 2008 and 2009. $Na^+$, $NH_4^+$ and $NO_3^-$, $SO_4^{2-}$ were the principle cations and anions in both coarse and fine particles. Water soluble ions occupied 24.4%(spring), 33.2%(summer), 40.7%(fall), and 39.6%(winter) of the total mass of coarse particles. In fine particles, 43.0%(spring), 59.7%(summer), 55.4%(fall), and 53.2%(winter) of mass were occupied by water soluble ions. From the factor analysis, 2 and 4 factors were extracted for water soluble ions in coarse and fine particles, respectively. 70.33% of water ions in the coarse particles were estimated from the natural source, but 66.01% in the fine particles were from the anthropogenic source.

Studies on Benzo(a) pyrene Concentrations in Atmospheric Particulate Matters (大氣浮游粒子狀物質中 Benzo(a) pyrene 濃度에 關한 硏究)

  • 손동헌;허문영;남궁용
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.2
    • /
    • pp.11-17
    • /
    • 1987
  • Atmospheric particulate matter (A.P.M.) was collected on quartz fiber filters from March 1985 to February 1986 at Chung-Ang University according to particle size using Andersen high-volume air smapler, and benzo (a) pyrene concentration in these particulates were analyzed by high performance liquid chromatography. The annual arithmetic mean concentration of A.P.M. was 115.50$\mug/m^3$. The annual arithmetic mean concentrations of coarse particles and fine particles in A.P.M. were 52.54$\mum/m^3$ and 62.96$\mum/m^3$ respectively. THe annual arithmetic mean concentration of benzo(a)pyrene in A.P.M. was 1.44$ng/m^3$. THe annual arithmetic mean concentrations of benzo(a)pyrene in coarse particles and fine particles were 0.05 $ng/m^3$ and 1.39 $ng/m^3$ respectively. Thus, the concentration of benzo(a)pyrene showed maldistribution of 96.53% in fine particle. A.P.M. showed wide fluctuation according to the season. The concentration of A.P.M. was lowest in summer and high in spring and winter. Coarse and fine particle concentrations in A.P.M. were highest in spring and winter, respectively. The concentrations of benzo(a)pyrene was highest in winter and lowest in summer. The concentrations of benzo(a)pyrene in fine and coarse particles were highest in winter and spring, respectively.

  • PDF

Elemental concentrations of atmospheric particles in Cheonan during 2006 (2006년 천안시 대기 입자의 원소 성분 특성)

  • Oh, Se-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1782-1786
    • /
    • 2008
  • To investigate the characteristics of elemental components of atmospheric particles in Cheonan, atmospheric particles were sampled using a high volume air sampler equipped with a 5-stage cascade impactor during 2006. 16 elemental concentrations in fine and coarse particles were determined using ICP-AES and ICP-MS. The total mass concentrations of fine and coarse particles were 33.23 and $20.66{\mu}g/m3$, respectively, and the total elemental concentrations were 1.27, $1.71{\mu}g/m3$, occupying 3.8 and 8.3% of the total mass. Fe, Al, Ti were the most abundant elements in both fine and coarse particles, and the total Pb concentration was 84.55ng/m3, below the National standard. Enrichment factor for Sc, Cr, Cu, Zn, As, Se, Sn, Pb in fine particles were above 1,000. This indicates that the elements in fine particles are mainly from the anthropogenic sources including automobiles.

Development of a High-Volume Simultaneous Sampler for Fine and Coarse Particles using Virtual Impactor and Cyclone Techniques

  • Okuda, Tomoaki;Shishido, Daiki;Terui, Yoshihiro;Fujioka, Kentaro;Isobe, Ryoma;Iwaki, Yusuke;Funato, Koji;Inoue, Kozo
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.78-86
    • /
    • 2018
  • Filter-based sampling techniques are the conventional way to collect particulate matter, but particles collected and entangled in the filter fibers are difficult to be removed and thus not suited for the following cell- and animal-based exposure experiments. Collecting aerosol particles in powder form using a cyclone instead of a filter would be a possible way to solve this problem. We developed a hybrid virtual-impactor/cyclone high-volume fine and coarse particle sampler and assessed its performance. The developed system achieved 50% collection efficiency with components having the following aerodynamic cut-off diameters: virtual impactor, $2.4{\mu}m$; fine-particle cyclone, $0.18-0.30{\mu}m$; and coarse-particle cyclone, $0.7{\mu}m$. The virtual impactor used in our set-up had good $PM_{2.5}$ separation performance, comparable to that reported for a conventional real impactor. The newly developed sampler can collect fine and coarse particles simultaneously, in combination with exposure testing with collected fine- and coarse-particulate matter samples, should help researchers to elucidate the mechanism by which airborne particles result in adverse health effect in detail.