• Title/Summary/Keyword: fine and coarse aggregate volume ratio

Search Result 20, Processing Time 0.033 seconds

An Experimental Study on the Estimation of Compressive Strength and the Physical Properties of Recycled Aggregate Concrete of Fixed Slump (슬럼프 고정 순환골재콘크리트의 물리적 특성 및 압축강도 추정에 관한 실험적 연구)

  • Kim, Sang-Heon;Jeon, Chan-Soo;Lee, Sea-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.51-58
    • /
    • 2018
  • This study was a basic research for actual production of recycled aggregate concrete, and experiments were carried out on the change of water cement ratio and physical properties of recycled aggregate concrete with fixed slump. Results were as follows. Concrete using recycled aggregate were required increased water to maintain the target slump, and the recycled fine aggregate are necessary more increased water more than the recycled coarse aggregate. The replacement ratio of recycled fine aggregate be less than 60%, would be possible to obtain the air content volume that did not deviate from the concrete quality specification. The compressive strength of concrete using recycled aggregate decreased with increasing the replacement of recycled aggregate, and compressive strength decreased by 25% when 100% recycled fine aggregate were replaced. As a result of analyzing the correlation of compressive strength according to the mixing factors of concrete, it was found that replacement of recycled fine aggregate> water cement ratio> air content volume were influenced in order.

A Study on the Void Ratio and Permeability Coefficient Properties of fiber Reinforced Porous Concrete (섬유보강 포러스 콘크리트의 공극률과 투수계수 특성에 관한 연구)

  • Kim, Jeong-Hwan;Cho, Gwang-Yoen;Lee, Jun;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.677-682
    • /
    • 2000
  • Porous concrete is defined as d type of concrete for which the fine aggregate component the matrix is entirely omitted. Although it had been used as a building material in Europe for over 60 years, low strength and high void ratio limited its application in the past. In recent years, however high void ratio of concrete has been recognized again and can be used as an environmental conscious material, for example, parking lots, draining light-traffic-volume pavements and as sea water purifying material. The result of an experiment on the void ratio of fiber reinforced porous concrete and its influence on the compressive strength and permeability relationship of concrete are reported in this paper. One-sized coarse aggregate of 5-10mm, and three absolute content of fiber(steel fiber, polyprophylen fiber) were used. The result of measured void ratio, permeability coefficient and compressive strength show a small variation. Void ratio, permeability coefficient and compressive strength of fiber reinforced porous concrete depend on contents of fiber and absolute volume ratios of paste to aggregate.

  • PDF

Experimental Study on the Properties of Recycled Concrete using Recycled Coarse Aggregates and Steel Slag Fine Aggregates (재생 굵은골재와 제강슬래그 잔골재를 사용한 재생 콘크리트의 특성에 관한 실험적 연구)

  • Lee, Jaesung;Na, Okpin
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.63-71
    • /
    • 2015
  • The purpose of this study is to investigate the optimum replacement rate and material properties of eco-friendly recycled concrete using recycled coarse aggregates and rapid-chilled steel slag fine aggregates. The replacement rate of recycled coarse aggregates was increased from 30% to 50% of total volume of coarse aggregates and the rapid-chilled steel slag aggregates were substituted for 10% to 50% of total volume of fine aggregates. As a result, the increment of recycled coarse aggregates in concrete caused the reduction of the compressive strength. On the other hand, as increasing the replacement ratio of rapid chilled steel slag aggregates, the compressive strength was enhanced. Furthermore, the optimum use of rapid chilled steel slag aggregates was suggested up to 20~30% of fine aggregates and the use of it could be helpful to expand the replacement rate of recycled aggregates.

The mechanical properties of Reactive Powder Concrete using Ternary Pozzolanic Materials exposed to high Temperature (3성분계 포졸란재를 이용한 반응성 분체 콘크리트(RPC)의 고온특성)

  • Janchivdorj, Khulgadai;So, Hyoung-Seok;Yi, Je-Bang;So, Seung-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.68-71
    • /
    • 2013
  • Reactive Powder Concrete (RPC) is an ultra high strength and high ductility cement-based composite material and has shown some promise as a new generation concrete in construction field. It is characterized by a silica fume-cement mixture with very low water-binder (w/b) ratio and very dense microstructure, which is formed using various powders such as cement, silica fume and very fine quartz sand (0.15~0.4mm) instead of ordinary coarse aggregate. However, the unit weight of cement in RPC is as high as 900~1,000 kg/㎥ due to the use of very fine sand instead of coarse aggregate, and a large volume of relatively expensive silica fume as a high reactivity pozzolan is also used, which is not produced in Korea and thus must be imported. Since the density of RPC has a heavy weight at 2.5~3.0 g/㎤. In this study, the modified RPC was made by the combination of ternary pozzolanic materials such as blast furnace slag and fly ash, silica fume in order to economically and practically feasible for Korea's situation. The fire resistance and structural behavior of the modified RPC exposed to high temperature were investigated.

  • PDF

Capacity Evaluation of SFRC Beams Using Recycled Fine and Coarse Aggregates (순환 잔골재 및 굵은골재를 사용한 SFRC 보의 성능 평가)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.122-129
    • /
    • 2017
  • The aim of this study is a large amount use of recycled aggregates. The considering recycled aggregates replacement ratio is 50% that of natural aggregates. In order to increase the shear capacity of beams, that may be weaken by use of recycled aggregates, steel fibers are reinforced. The main variables are steel fiber volume fractions such as 0%, 0.5%, 0.75% and 1.0%. After the test, it could confirm that the strength and deformation capacity of beams with the steel fiber content values of 0.5% and 0.75% are comprehensively enhanced compared to non reinforcement. After evaluating the shear strength by using shear strength equations of previous researches, it concluded that the strength equation of Oh et al. (2008) is able to predict the shear strength of SFRC beams on the safety side.

Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate

  • Qi, Jianan;Wanga, Jingquan;Feng, Yu
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.219-229
    • /
    • 2019
  • This paper presents an experimental study on the structural performance of an innovative ultra-high performance fiber reinforced concrete (UHPFRC) deck with coarse aggregate of composite bridge under shear force. Test parameters included curing method and shear span-to-height ratio. Test results indicated that more short fine cracks developed beside the existing cracks due to the randomly dispersed fibers, resulting in re-distributing and homogenizing of the concrete stress beside cracks and allowing for the occurrence of more cracks with small spacing compared to normal strength concrete beams. Curing methods, incorporating steam curing and natural curing, did not have obvious effect on the nominal bending cracking strength and the ultimate strength of the test specimens. Shear reinforcement need not be provided for UHPFRC decks with a fiber volume fraction of 2%. UHPFRC decks showed superior load resistance ability after the appearance of cracks and excellent post-cracking deformability. Lastly, the current shear provisions were evaluated by the test results.

Effect Analysis of Mix Designing Factors on Workability and Rheological Parameters of Self-Compacting Concrete (배합요인이 자기충전 콘크리트의 워커빌리티 및 레올로지 파라미터에 미치는 영향 분석)

  • Yoon, Seob;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.235-242
    • /
    • 2018
  • The objective of the paper is to investigate the effect of mix designing factors on the workability and rheological parameters of self compacting concrete in order to facilitate the difficulties of quality control of high sensitivity of SCC. Mix proportions of SCC were prepared with various conditions of coarse, and fine aggregate, and unit water content, and the SCC mixtures were tested on workability, rheological properties to provide basic data for quantitative evaluation. Test results indicated that the yield stress of SCC decreased with increasing the coarse aggregate volume ratio, and increased with increasing the amount of VMA. However, unit water content, fine aggregate type, and air content didn't affect the yield stress value. The plastic viscosity according to the mixing factors showed a similar tendency to the yield stress. In addition, there was no correlation between yield stress and workability (flow, T50, V-lot). However, there was closely correlation among plastic viscosity and T50 and V-lot. Especially, T50 and V-lot time decreased with decreasing plastic viscosity.

Application of Oyster Shells as Aggregates for Concrete (콘크리트용 골재로서 굴패각의 활용)

  • 어석홍;황규한;김정규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.540-548
    • /
    • 2002
  • The purpose of this study is to analyze the application of oyster shells (OS) as aggregates for concrete. For this purpose, five reference mixes with W/C ratios of 0.4 ∼0.6 at intervals of 0.05 were used. The replacement proportion of OS was varied with ratios of 0, 10, 30, 50 and 100% by volume of fine or coarse aggregate in the reference mixes. OS was washed and crushed for using as aggregates. New chemical reaction between crushed OS aggregate and cement paste was tested through XRD and SEM analysis. Two strength properties (compressive and flexural) were considered. Strength tests were carried out at the ages of 1, 3, 7, 14 and 28 days. The variations of workability, air content and density, drying shrinkage of the specimens with different proportions of OS were also studied. Finally, the hollow concrete block using OS as a substitute material for fine aggregate was made for testing the application of OS. Experimental results showed that my new chemical reaction did not occur due to mixing OS in concrete. The workability and strengths decreased with increase in proportion of OS. The same trend was observed in density and unit weight, but air content increased due to the inherent pores in OS, which showed a possibility to produce light weight concrete with low strength by using OS as coarse aggregates for concrete. Tests on hollow concrete block showed that the compressive strength and absorption ratio were satisfied with quality requirements when the fine aggregate was substituted with OS up to 50% in volume.

Properties of High Volume Blast Furnace Slag Concrete using Recycled Aggregate with Incineration Waste Ash (소각장애시의 치환에 따른 고로슬래그 미분말 다량치환 순환골재 콘크리트의 특성)

  • Han, Cheon-Goo;Lee, Hyang-Jae;Kim, Jun-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • This study is the study desiring to solve the problem by utilizing the kinds of recycled resources considered to be troubled complementarily. Namely the reaction of potential hydraulicity of Blast Furnace Slag Powder (BS) shall be reacted with the alkali of Recycled Fine Aggregates Coarse Aggregate, it has been experimented to obtain the optimum value with the replacement ratio of incineration plant ash (WA) treated with the slaked lime as the experiment variable by solving the alkali of shortage with the Ordinary Portland Cement (OPC). As a result, the liquidity and the air volume are declined slightly as the replacement ratio of incineration plant ash WA increases, the mixture of incineration plant ash WA 1% has been analyzed to be the most suitable considering the viewpoint of effective handling of waste as the compression and the tensile strength showed the maximum value before and after 1% even though it was disadvantageous with the increase of chloride content.

Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray

  • Mohamed Amin;Ahmad A. Hakamy;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.29-53
    • /
    • 2023
  • High-strength shielding concrete against gamma radiation is a priority for many medical and industrial facilities. This paper aimed to investigate the gamma-ray shielding properties of high-strength hematite concrete mixed with silica fume (SF) with nanoparticles of lead dioxide (PbO2), tungsten oxide (WO3), and bismuth oxide (Bi2O3). The effect of mixing steel fibres with the aforementioned binders was also investigated. The reference mixture was prepared for high-strength concrete (HSCC) containing 100% hematite coarse and fine aggregate. Thirteen mixtures containing 5% SF and nanoparticles of PbO2, WO3, and Bi2O3 (2%, 5%, and 7% of the cement mass, respectively) were prepared. Steel fibres were added at a volume ratio of 0.28% of the volume of concrete with 5% of nanoparticles. The slump test was conducted to workability of fresh concrete Unit weight water permeability, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests were conducted to assess concrete's engineering properties at 28 days. Gamma-ray radiation of 137Cs emits photons with an energy of 662 keV, and that of 60Co emits two photons with energies of 1173 and 1332 keV were applied on concrete specimens to assess radiation shielding properties. Nanoparticles partially replacing cement reduced slump in workability of fresh concrete. The compressive strength of mixtures, including nanoparticles was shown to be greater, achieving 94.5 MPa for the mixture consisting of 7.5 PbO2. In contrast, the mixture (5PbO2-F) containing steel fibres achieved the highest values for splitting tensile, flexural strength, and modulus of elasticity (11.71, 15.97, and 42,840 MPa, respectively). High-strength shielded concrete (7.5PbO2) showed the best radiation protection. It also showed the minimum concrete thickness required to prevent the transmission of radiation.