• Title/Summary/Keyword: fine Si powder

Search Result 147, Processing Time 0.025 seconds

Application of Waste Concrete Powder as Silica Powder of Cement Extruding Panel (시멘트 압출패널의 규사분말 대체재로서 폐콘크리트 미립분의 활용)

  • Kim, Jin-Man;Kim, Kee-Seok;La, Jung-Min;Choi, Duck-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.88-94
    • /
    • 2011
  • To make recycling aggregate, quantity of fine particles increase due to multi-crushing. Though this particles were mixed with recycling aggregate, those have to be disparted from aggregate in the high quality recycling aggregate, because of the cause of low quality. Considering reactivity, fine particles is better than coarse one. Therefore, it needs to develop suitable usage. We try to make cement extruding material by using the fine particles from concrete recycling, as a silicious replacement. Test results are as follows ; 1) Waste concrete powder has major ingredients such as $SiO_2$ and CaO, its density is $2.45g/cm^3$ being similar to silica powder, its diameter is range 13 to $141{\mu}m$. 2) Considering to strength properties according to particle size, specimen was made using small particles is higher strength than large one. 3) Despite of exception in the autoclaved curing, when the replacement of waste fine particle increase, strength of extruding panel shows almost same level.

  • PDF

SiC aggregates synthesized from carbonized rice husks, paper sludge, coffee grounds, and silica powder (탄화왕겨, 제지슬러지, 커피찌거기 및 실리카 혼합물로부터 탄화규소 결정체 합성)

  • Park, Kyoung-Wook;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.45-49
    • /
    • 2019
  • Relatively fine silicon carbide (SiC) crystalline aggregates have been synthesized with the carbonized rice husks, paper sludge, coffee grounds as the carbon sources and the silica powder. The main reaction source to obtain silicon carbide (SiC) aggregates from the mixture of carbon sources and silica was inferred as the gaseous silicon monoxide (SiO) phase, being created from this mixture through the carbothermal reduction reaction. The silicon carbide (SiC) crystalline aggregates, fabricated from the carbonized rice husks and paper sludge, coffee grounds and silica ($SiO_2$) powder, were investigated by XRD patterns, FE-SEM and FE-TEM images. In these specimens, obtained from the carbonized rice husks, paper sludge and silica, XRD patterns showed rather high strong peak of (111) plane near $35^{\circ}$. The FE-TEM images and patterns of specimens, synthesized from carbonized rice husks, paper sludge, coffee grounds and silica under Ar atmosphere, showed relatively fine particles under $1{\mu}m$ and crystalline peak (110) of silicon carbide (SiC) diffraction pattern.

A Study on the Mechanical Properties and Specific Resistivity of Reaction-Bonded Silicon Carbide According to α-SiC of Various Mixed Particle Size (반응소결 탄화규소의 다양한 α-SiC 조성에 따른 기계적 특성과 전기저항 특성에 관한 연구)

  • Kim, Young-Ju;Park, Young-Shik;Jung, Youn-Woong;Song, Jun-Baek;Park, So-Young;Im, Hang-Joon
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.172-177
    • /
    • 2012
  • For the manufacture of low resistance Si-SiC composite, the properties of reaction sintering in the green body of various mixed ${\alpha}$-SiC powder size with the various carbon contents from 0wt% to 20wt% were investigated. The samples preparation was green body by CIP method under this condition, molten silicon infiltration process was conducted to reaction bonded silicon carbide. the results of sintered density, 3-point bending strength and resistance of analysis showed that varied carbon and silicon melt reacted to convert to fine ${\beta}$-SiC particle and the structure was changed to dense material. The amount of fine ${\beta}$-SiC particle was gradually increased as carbon content increase. According to mixed composite, it's mechanical and specific resistivity properties was strongly influenced by carbon content within 10wt% more then carbon content 10wt% was strongly influenced by phase transition.

High-temperature Oxidation of Turbocharger Steels Manufactured by Powder Metallurgy and Casting (분말야금법과 주조법으로 제조한 자동차 터보차져강의 고온산화)

  • Park, Soon Yong;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.132-139
    • /
    • 2015
  • Turbocharger steels were manufactured by the powder metallurgical and casting method. They consisted primarily of a large amount of ${\gamma}$-Fe, a small amount of ${\alpha}$-Fe, and fine $Nb_6C_5$ precipitates. The casting method was better than the powder metallurgical method, because a sound matrix with little oxides were obtained. When turbocharger steels were oxidized at $900^{\circ}C$ for 50 h, $Mn_2VO_4$ and (Mn,Si)-oxides were formed along grain boundaries, while $Mn_2O_3$ and $CrMn_2O_4$ were formed intragranularly. Fe, Nb, and Ni were depleted in the oxide scale.

Magnetic Properties of FeCuNbSiB Nanocrystalline Alloy Powder Cores Using Ball-milled Powder

  • Kim, G. H.;T. H. Noh;Park, G. B.;Kim, K. Y.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.202-203
    • /
    • 2002
  • Ribbon type nanocrystalline alloy cores have shown excellent soft magnetic properties in the high frequency range because of small crystalline anisotropy and nearly zero magnetostriction[1]. In present, however ribbon alloys gives some limit in applications such as a large inductor and reactors of PFC circuit, which are required good DC bias property and low loss in the high frequency. Powder alloys with ultra fine grain structure can be an important way to overcome this kind of disadvantage, and to improve the high frequency soft magnetic properties in conventional metallic powder cores[2]. (omitted)

  • PDF

P/M Aluminium Automobile Parts in Sumitomo Electric Ind. Ltd.

  • Akechi, Kiyoaki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.04a
    • /
    • pp.5-5
    • /
    • 1997
  • Rapidly-solidified P/M aluminium alloys for automobile and home appliance industries were developed. Rapidly-solidification made it possible to refine microstructures and to expand the range of alloy composition. For example, Al-Si alloys containing transition metal have lower thermal expansion coefficient, more excellent wear resistance, higher strength, and better machinability than those of conventional aluminium alloys. Therefore, in Japan, the technologies on powder-extrusion and powder-forging of aluminium alloy powders are developed for fifteen years, and applied to several parts, such as cylinder liners of motor cycle engines, rotors and vanes of compressors for car air conditioner, oil pump rotor for racing car, and so on. In this presentation, applications for automobile are mentioned. In particular, cylinder liners made of particle-dispersed composites with fine alumina and graphite are in detail described.

  • PDF

Microstructural Evolution and Tensile Properties of Cu-Sn Based Alloys Manufactured by Spray Casting Route (분무주조에 의해 제조된 Cu-Sn계 합금의 미세조직 및 인장성질)

  • Shim, Sang-Hyun;Kang, Hee-Soo;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.477-481
    • /
    • 2010
  • Cu-Sn based alloys were manufactured by gas atomization spray casting route in order to achieve a fine scale microstructure and a high tensile strength. The spray cast Cu-10Sn-2Ni-0.2Si alloy had an equiaxed grain microstructure, with no formation of brittle ${\delta}-Cu_{41}Sn_{11}$ phase. Aging treatment promoted the precipitation of finely distributed particles corresponding to ${\delta}-Ni_2Si$ intermetallic phase throughout the $\alpha$-(CuSn) matrix. The cold-rolled Cu-Sn-Ni-Si alloy had a very high tensile strength of 1200 MPa and an elongation of 5%. Subsequent aging treatment at $450^{\circ}C$ for 1h slightly reduced the tensile strength to 700 MPa and remarkably increased the elongation up to 30%. This result has been explained by coarsening the precipitates due to over aging and reducing the dislocation density due to annealing effects.

Characteristics of Shear Strength for joined SiC-SiC Ceramics (SiC세라믹스 동종재 접합재의 전단강도 특성 평가)

  • Yoon, Han Ki;Jung, Hun Chea;Hinoki, T.;Kohyama, A.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.483-487
    • /
    • 2014
  • In this study, joining methods with SiC powder as the joining adhesives were studied in order to avoid the residual stresses coming from CTE (Coefficient of Thermal Expansion) mismatch between substrate and joining layer. The shear strength and microstructure of joined material between SiC substrates are investigated. The commercial Hexoloy-SA (Saint-Gobain Ceramics, USA) used in this work as substrate material. The fine ${\beta}$-SiC nano-powder which the average particle size is below 30 nm, $Al_2O_3$, $Y_2O_3$, and $SiO_2$ were used as joining adhesives. The specimens were joined with 20MPa and $1400-1900^{\circ}C$ by hot pressing in argon atmosphere. The shear test was performed to investigate the bonding strength. The cross-section of the joint was characterized by using an optical microscope and scanning electron microscopy (SEM).

Microstructures and Electrochemical Properties of Si-M (M : Cr, Ni) as Alloy Anode for Li Secondary Batteries (리튬이차전지용 Si-M (M : Cr, Ni) 합금 음극의 미세구조와 전기화학적 특성)

  • Lee, Sung-Hyun;Sung, Jewook;Kim, Sung-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • To compare the microstructure and electrochemical properties between two binary alloys (Cr-Si, Ni-Si), two composition of binary alloys with the same capacity were selected using phase-diagram and prepared by matrix-stabilization method to suppress the volume expansion of Si by inactive-matrix. Master alloys were made by Arc-melting followed by fine structured ribbon sample preparation by Rapid Solidification Process (RSP, Melt-spinning method) under the same conditions. Also powder samples were produced by wet grinding for X-Ray Diffraction (XRD) and electrochemical measurements. As predicted from the phase diagram, only active-Si and inactive-matrix ($CrSi_2$, $NiSi_2$) were detected. The results of Scanning Electron Microscope (SEM) and Transmission Electron Microscopy - Energy Dispersive X-ray Spectroscopy (TEM-EDS) show that Cr-Si alloy has finer microstructure than Ni-Si alloy, which was also predictable through phase diagram. The electrochemical properties related to microstructure were evaluated by coin type full- and half-cells. Separately, self-designed test-cells were used to measure the volume expansion of Si during reaction. Volume expansion of Cr-Si alloy electrode with finer microstructure was suppressed significantly and improved in cycle capability, in comparison Ni-Si alloy with coarse microstructure. From these, we could infer the correlation of microstructure, volume expansion and electrochemical degradation and these properties might be predicted by phase diagram.

Effect of Oxide Particles Addition to Powder Coating on Corrosion Resistance of Steel Used as Marine Equipments (조선·해양 기자재용 강재의 내식성에 미치는 분체도장 중 산화물 첨가의 영향)

  • Park, Jin-seong;Ryu, Seung Min;Jeong, Yeong Jae;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.100-107
    • /
    • 2020
  • The demand for powder-coated steel used in the marine industry is increasing owing to their superior corrosion resistance. However, the powder coatings used in commercial products can deteriorate easily by the penetration of brine. In an attempt to suppress brine penetration into the powder coating and significantly increase the corrosion resistance, three types of oxide particles were added to the coating. Electrochemical impedance spectroscopy tests in 3.5% NaCl solution were performed to evaluate the corrosion behaviors of the powder coating with oxide particles. The results showed that the addition of SiO2 particles to a powder coating severely decreased the corrosion resistance due to the easy detachment of agglomerated SiO2 particles with a coarse size from the coating layer. In contrast, the TiO2 and SnO2-added coatings showed better corrosion resistance, and the TiO2-added coating performed best in the test conducted at room temperature. However, conflicting results were obtained from tests conducted at a higher temperature, which may be attributed to the effective suppression of brine penetration by the fine SnO2 particles uniformly distributed in the coating.