• Title/Summary/Keyword: financial time series

Search Result 265, Processing Time 0.022 seconds

A Study on Establishment of Time Series Model for Deriving Financial Outlook of Basic Research Support Programs (기초연구지원사업의 재정소요 전망 도출을 위한 시계열 모형 수립 연구)

  • Yun, Sujin;Lee, Sangkyoung;Yeom, Kyunghwan;Shin, Aelee
    • Journal of Technology Innovation
    • /
    • v.27 no.4
    • /
    • pp.21-48
    • /
    • 2019
  • In the basic research field, quantitative expansion is carried out with active support from the government, but there is no research and policy data suggesting systematic investment plans or data-based financial requirements yet. Therefore, this study predicted future financial requirements of basic research support programs by using time series prediction model. In order to consider various factors including the characteristics of the basic research field, we selected the ARIMAX model which can reflect the effect of multi valuable factors rather than the ARIMA model which predicts the value of single factor over time. We compared the predictions of ARIMAX and ARIMA models for model suitability and found that the ARIMAX model improves the prediction error rate. Based on the ARIMAX model, we predicted the fiscal spending of basic research support programs for five years from 2017 to 2021. This study has significance in that it considers the financial requirements of the basic research support programs as a pilot research conducted by applying a time series model, which is a statistical approach, and multi-variate rather than single-variate. In addition, considering the policy trends that emphasize the importance of basic research investment such as 'the expansion of basic research budget twice', which is the current government's national policy task, it can be used as reference data in establishing basic research investment strategy.

Correlation Analyses of the Temperature Time Series Data from the Heat Box for Energy Modeling in the Automobile Drying Process (자동차 건조 공정 에너지 예측 모형을 위한 공조기 온도 시계열 데이터의 상관관계 분석)

  • Lee, Chang-Yong;Song, Gensoo;Kim, Jinho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.2
    • /
    • pp.27-34
    • /
    • 2014
  • In this paper, we investigate the statistical correlation of the time series for temperature measured at the heat box in the automobile drying process. We show, in terms of the sample variance, that a significant non-linear correlation exists in the time series that consist of absolute temperature changes. To investigate further the non-linear correlation, we utilize the volatility, an important concept in the financial market, and induce volatility time series from absolute temperature changes. We analyze the time series of volatilities in terms of the de-trended fluctuation analysis (DFA), a method especially suitable for testing the long-range correlation of non-stationary data, from the correlation perspective. We uncover that the volatility exhibits a long-range correlation regardless of the window size. We also analyze the cross correlation between two (inlet and outlet) volatility time series to characterize any correlation between the two, and disclose the dependence of the correlation strength on the time lag. These results can contribute as important factors to the modeling of forecasting and management of the heat box's temperature.

The fGARCH(1, 1) as a functional volatility measure of ultra high frequency time series (함수적 변동성 fGARCH(1, 1)모형을 통한 초고빈도 시계열 변동성)

  • Yoon, J.E.;Kim, Jong-Min;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.667-675
    • /
    • 2018
  • When a financial time series consists of daily (closing) returns, traditional volatility models such as autoregressive conditional heteroskedasticity (ARCH) and generalized ARCH (GARCH) are useful to figure out daily volatilities. With high frequency returns in a day, one may adopt various multivariate GARCH techniques (MGARCH) (Tsay, Multivariate Time Series Analysis With R and Financial Application, John Wiley, 2014) to obtain intraday volatilities as long as the high frequency is moderate. When it comes to the ultra high frequency (UHF) case (e.g., one minute prices are available everyday), a new model needs to be developed to suit UHF time series in order to figure out continuous time intraday-volatilities. Aue et al. (Journal of Time Series Analysis, 38, 3-21; 2017) proposed functional GARCH (fGARCH) to analyze functional volatilities based on UHF data. This article introduces fGARCH to the readers and illustrates how to estimate fGARCH equations using UHF data of KOSPI and Hyundai motor company.

Financial Development and Economic Growth in Korea

  • HWANG, SUNJOO
    • KDI Journal of Economic Policy
    • /
    • v.42 no.1
    • /
    • pp.31-56
    • /
    • 2020
  • Does financial development contribute to economic growth? The literature finds that an expansion in financial resources is useful for economic growth if the degree of financial development is under a certain threshold; otherwise, the expansion is detrimental to growth. Almost every published study, however, considers country-panel data. Accordingly, the results are not directly applicable to the Korean economy. By examining Korean time-series data, this paper finds that there is an inverse U-shaped relationship between the per capita real GDP growth rate and private credit (as a percentage of nominal GDP)-a well-known measure of quantitative financial development, where the threshold is 171.5%. This paper also finds that private credit is positively associated with economic growth if the share of household credit out of private credit is less than 46.9%; otherwise, private credit is negatively associated with economic growth. As of 2016, the ratio of private credit to GDP and the ratio of household credit to private credit are both higher than the corresponding thresholds, which implies that policymakers should place more emphasis on qualitative financial development than on a quantitative expansion of financial resources.

News Impact Curves of Volatility for Asymmetric GARCH via LASSO (LASSO를 이용한 비대칭 GARCH 모형의 변동성 커브)

  • Yoon, J.E.;Lee, J.W.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.1
    • /
    • pp.159-168
    • /
    • 2014
  • The news impact curve(NIC) originally proposed by Engle and Ng (1993) is a graphical representation of volatility for financial time series. The NIC is a simple but a powerful tool for identifying variability of a given time series. It is noted that the NIC is suited to symmetric volatility. Recently a lot of attention has been paid to asymmetric volatility models and therefore asymmetric version of the NIC would be useful in the field of financial time series. In this article, we propose to incorporate LASSO in constructing asymmetric NICs based on asymmetric GARCH models. In particular, bilinear GARCH models are considered and illustrated via KOSDAQ data.

Volatility Analysis for Multivariate Time Series via Dimension Reduction (차원축소를 통한 다변량 시계열의 변동성 분석 및 응용)

  • Song, Eu-Gine;Choi, Moon-Sun;Hwang, S.Y.
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.825-835
    • /
    • 2008
  • Multivariate GARCH(MGARCH) has been useful in financial studies and econometrics for modeling volatilities and correlations between components of multivariate time series. An obvious drawback lies in that the number of parameters increases rapidly with the number of variables involved. This thesis tries to resolve the problem by using dimension reduction technique. We briefly review both factor models for dimension reduction and the MGARCH models including EWMA (Exponentially weighted moving-average model), DVEC(Diagonal VEC model), BEKK and CCC(Constant conditional correlation model). We create meaningful portfolios obtained after reducing dimension through statistical factor models and fundamental factor models and in turn these portfolios are applied to MGARCH. In addition, we compare portfolios by assessing MSE, MAD(Mean absolute deviation) and VaR(Value at Risk). Various financial time series are analyzed for illustration.

Extended Constant Conditional Correlation (ECCC) Model for Multivariate GARCH Time Series: an Illustration (다변량 GARCH 모형의 CCC 및 ECCC 비교분석)

  • Lee, Seung Yeon;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.7
    • /
    • pp.1219-1228
    • /
    • 2014
  • Constant conditional correlation (CCC) is frequently employed for parsimony in the field of multivariate GARCH time series. An extended-CCC (ECCC) model is further developed in order to allow interactions between multivariate volatilities. The paper introduces both CCC model and ECCC model to the domestic financial time series. The CCC and ECCC models are fitted and then compared with each other through various multivatiate time series.

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taeksoo;Han, Ingoo
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support fer multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To date, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques' results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taek-Soo;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support for multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To data, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

A Study on Estimating Container Throughput in Korean Ports using Time Series Data

  • Kim, A-Rom;Lu, Jing
    • Journal of Navigation and Port Research
    • /
    • v.40 no.2
    • /
    • pp.57-65
    • /
    • 2016
  • The port throughput situation has changed since the 2008 financial crisis in the US. Therefore, we studied the situation, accurately estimating port traffic of Korean port after the 2008 financial crisis. We ensured the proper port facilities in response to changes in port traffic. In the results of regression analysis, Korean GDP and the real effective exchange rate of Korean Won were found to increase the container throughput in Korean and Busan port, as well as trade volume with China. Also, the real effective exchange rate of Korean Won was found to increase the port transshipment cargo volume. Based on the ARIMA models, we forecasted port throughput and port transshipment cargo volume for the next six years (72 months), from 2015 to 2020. As a result, port throughput of Korean and Busan ports was forecasted by increasing annual the average from about 3.5% to 3.9%, and transshipment cargo volume was forecasted by increasing the annual average about 4.5%.