Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support for multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To data, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.
The utility of learning techniques in investment analysis has been demonstrated in many areas, ranging from forecasting individual stocks to entire market indexes. To date, however, the application of artificial intelligence to financial forecasting has focused largely on short predictive horizons. Usually the forecast window is a single period ahead; if the input data involve daily observations, the forecast is for one day ahead; if monthly observations, then a month ahead; and so on. Thus far little work has been conducted on the efficacy of long-term prediction involving multiperiod forecasting. This paper examines the impact of alternative procedures for extended prediction using knowledge discovery techniques. One dimension in the study involves temporal granularity: a single jump from the present period to the end of the forecast window versus a web of short-term forecasts involving a sequence of single-period predictions. Another parameter relates to the numerosity of input variables: a technical approach involving only lagged observations of the target variable versus a fundamental approach involving multiple variables. The dual possibilities along each of the granularity and numerosity dimensions entail a total of 4 models. These models are first evaluated using neural networks, then compared against a multi-input jump model using case based reasoning. The computational models are examined in the context of forecasting the S&P 500 index.
Although knowledge transfer between two different parties occurs in IS development projects, the majority of prior studies focused on knowledge transfer from IT consultants to clients. Considering two parts of knowledge transfer in IS development projects, we must consider both 'where knowledge is transferred from' and 'where it is transferred to'. Therefore, in this study, we attempt to describe two different routes of knowledge transfer, such as knowledge transfer from an IT consultant to a client and knowledge transfer from a client to an IT consultant. In this regard, we have examined the effect of two different routes of knowledge transfer on system implementation success in IS development project. Specifically, we adopted the knowledge stock-flow theory to examine the causal relationship between IT consulting firms and clients in terms of knowledge transfer and eventual system implementation success. Survey data collected from 213 pairs of individuals (both clients and IT consultants) were used to test the model using three different analytic approaches such as PLS (partial least squares) and two types of mediated regression techniques. We found that knowledge transfers partially mediated both the relationships between IT consultants' IT skills (project members' business knowledge) and system implementation success. Furthermore, the effects of each knowledge transfer were distinguished by depending on the types of system, such as ERP or groupware. Our attempts have significant implications for both research and practice given the importance of effective knowledge transfer to IT consulting.
오늘날 치열한 경쟁과 환경변화로 인해 많은 기업들은 고객관계관리(Customer Relationship Management, 이하 CRM)를 경영혁신의 도구로 인식하고 많은 투자 및 노력을 기울이고 있다. CRM 시스템의 개선 및 전략적 보완을 위한 지속적 노력과 더불어 이에 대한 이론적 연구가 활발하게 실시되었지만, 시스템 도입이 기업성과에 미치는 영향에 대한 실증연구는 포괄적으로 다루어지지 않았다. 최근 국내 금융업, 호텔, 항공 등의 분야에서 고객관계관리 도입으로 인한 기업성과에 대한 실증연구가 실시되었고, 외국에서는 병원관리학을 중심으로 균형성과표의 활용에 대한 연구가 실시되었지만, 국내 제약산업에 대해서는 이러한 연구들이 매우 부족한 실정이다. 이에 본 연구에서는 제약회사 고객관리 시스템의 수준이 Kaplan and Norton에 의해 제안된 균형성과표의 이론적 틀에 따라 기업성과에 어떠한 영향을 미치는지 연구해 보고자 하였다. 실증분석결과, CRM 시스템 수준은 기업성과에 유의적인 영향을 미치는 것으로 나타났다. 이는 시스템이 제공하는 유용한 분석자료들이 고객유지, 고객만족 및 고객수익성 개선에 유의적인 영향을 주어 결과적으로 기업의 수익성, 성장성 및 주주가치 증대에 폭 넓게 기여하며, 효율적 내부 프로세스로 뒷받침되는 바람직한 선순환구조를 제시하고 있다고 생각된다. 그러나 세부분석결과, 영업사원실적평가 시스템은 단기수익성 증대에만 유의적 영향을 주었고, 고객 분석시스템은 기업성과에 미치는 유의성이 없는 것으로 나타났다. 이는 제약회사 구성원들의 전통적 업무방식 고수, 단기목표 지향성 및 장기적 기업성과지표에 대한 인식 부족에서 기인한다고 생각된다. 연구결과, 제약기업에 보다 적합한 CRM 시스템의 개발과 보완, 인식률과 활용도 제고의 필요성이 제안되며, 표본 확대 및 대표성 개선을 통해 보다 의미 있는 연구결과가 제시될 수 있을 것이다.
Rachman, Rathria Arrina;Kadarusman, Yohanes Berenika;Anggriono, Kevin;Setiadi, Robertus
The Journal of Asian Finance, Economics and Business
/
제5권2호
/
pp.35-42
/
2018
In recent decades, financial crises in various countries have often been preceded by the rise in non-performing loans (NPLs) in the banks' asset portfolios. The increase in NPLs is proven to have adverse impact on the banking sector so that understanding the determinant of NPLs is immensely crucial to ensure the efficiency and soundness of the overall economy. This study aims to shed light on bank-specific factors that affect loan default problems in developing countries whose banking sectors play a major role in the overall economy. This study analyzes panel data sets of 36 commercial banks listed in the Indonesian Stock Exchange during the period 2008-2015. Applying fixed-effects panel regression model reveals that Indonesian banks' profitability and credit growth negatively influence the number of NPLs. Moreover, banks with higher profitability are proven to have lower NPLs because they can afford adequate credit management practices. Likewise, banks with higher credit growth evidently have lower NPLs in the sense that they demonstrate more specialized lending activity and thus have better credit management systems. These findings imply that, in order to lower loan defaults that can deteriorate banks' asset quality, banks should maintain their level of profitability and increase, rather than decrease, their credit supply to debtors.
이 연구는 국내 공공도서관 행정체계의 변천과정과 난맥상, 그에 따른 폐해를 진단하고 종래의 개선논의와 쟁점을 분석한 다음에 바람직한 개편방안과 후속조치를 제안하는데 목적이 있다. 이를 위하여 도서관 행정체계의 일원화(통합) 모형, 도서관의 지방행정기구화 방안, 자치단체의 도서관 운영 관리 방안을 제안하였다. 그리고 일원화를 위한 후속조치로 재산권 이관, 재정부담의 해소, 신분변동에 따른 불이익 차단, 관장직급의 조정, 사서직제의 개편, 관계법령의 개정 등을 제시하였다.
본 연구는 컨설팅 완성도, 업무효율성 등 컨설팅 성과가 재무적 및 비재무적 성과로 분류된 조직성과 간의 인과관계에서 조직지원의 조절역할을 탐색하고자 서울 경기 인천 지역의 중소기업을 대상으로 SPSS 20.0, AMOS 20,0 통계프로그램을 사용하여 실증분석을 실시하였다. 본 연구의 결과 컨설팅성과는 조직성과에 유의한 영향을 미치는 것으로 나타났으며, 특히, 컨설팅 성과가 높으면 높을수록 조직성과는 높은 것으로 나타내었다. 또한 컨설팅성과는 재무적 성과와 비재무적 성과에 긍정적인 영향을 미치는 것으로 나타내었다. 업무효율성 변수가 비재무적 성과 변수의 고객만족에 유의한 영향관계를 나타내지 않았으나, 컨설팅 완상도, 업무 효율성 성과가 높으면 높을수록 재무적 성과와 고객만족, 프로세스 개선, 인적관리 향상의 비재무적 성과에 긍정적인 영향관계를 미치는 것으로 나타냈다. 조직지원이 컨설팅 성과와 조직성과인 재무적 관점의 성과와 비재무적 관점의 성과 간의 관계에서 부분적인 조절효과를 나타났는데, 이러한 결과는 기업에서 상사의 역할이 얼마나 중요한지를 확인할 수 있어 학술적 및 실용적 의미는 높다고 판단된다.
Over the last four decades, industrial engineering (IE) research in Korea has continued to evolve and expand to respond to social needs. This paper aims to identify research topics in IE research and explore their dynamic changes over time. The topic modeling approach, which automatically discovers topics that pervade a large and unstructured collection of documents, is adopted to identify research topics in domestic IE research. 1,242 articles published from 2001 to 2015 in two IE journals issued by the Korean Institute of Industrial Engineers were collected and their English abstracts were analyzed. Applying the Latent Dirichlet Allocation model led us to uncover 50 topics of domestic IE research. The top 10 most popular topics are revealed, and topic trends are explored by examining the dynamic changes over time. The four topics, technology management, financial engineering, data mining (supervised learning), efficiency analysis, are selected as hot topics while several traditional topics related with manufacturing are revealed as cold topics. The findings are expected to provide fruitful implications for IE researchers.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권2호
/
pp.587-608
/
2022
The European Union recently established the General Data Protection Regulation (GDPR) for secure data use and personal information protection. Inspired by this, South Korea revised their Personal Information Protection Act, the Act on Promotion of Information and Communications Network Utilization and Information Protection, and the Credit Information Use and Protection Act, collectively known as the "Three Data Bills," which prescribe safe personal information use based on pseudonymous data processing. Based on these bills, the personal data store (PDS) has received attention because it utilizes the MyData service, which actively manages and controls personal information based on the approval of individuals, and it practically ensures their rights to informational self-determination. Various types of PDS models have been developed by several countries (e.g., the US, Europe, and Japan) and global platform firms. The South Korean government has now initiated MyData service projects for personal information use in the financial field, focusing on personal credit information management. There is also a need to verify the efficacy of this service in diverse fields (e.g., medical). However, despite the increased attention, existing MyData models and frameworks do not satisfy security requirements of ensured traceability, transparency, and distributed authentication for personal information use. This study analyzes primary PDS models and compares them to an internationally standardized framework for personal information security with guidelines on MyData so that a proper PDS model can be proposed for South Korea.
온라인 뱅킹 서비스의 성공을 위해서는 이용 고객의 신뢰를 제고하는 것이 필수적이다. 현재까지 인터넷 뱅킹 이용자들의 신뢰를 제고하는 보안 메커니즘으로 공인인증 서비스가 가장 유력한 대안으로 사용되어 왔다. 그러나 최근 공인인증서를 통한 보안 메커니즘은 해커 등 악의적인 사용자의 침입에 취약할 수 있다는 주장이 제기되고 있다. 본 연구에서는 온라인 뱅킹 보안 메커니즘의 견고성을 높이기 위한 추가적인 대안으로 공인인증서 사용과 관련된 과정의 투명성과 결과 피드백의 투명성이라는 두 가지 요소를 제안하였다. 과정의 투명성은 거래과정에 대한 정보를 이용자에게 제공함으로써 거래 과정을 통제할 수 있도록 하는 것이다. 결과 피드백은 거래결과를 이용자에게 알려줌으로써 이용자가 거래가 의도한 대로 완료되었음을 확인할 수 있도록 하는 것이다. 정보의 투명성에 관한 선행 연구에 따르면, 거래과정과 결과에 대한 정보를 제공하여 투명성을 제고하면 정보시스템 이용자의 의사결정 품질이 제고된다. 거래과정에 대한 정보의 투명성이 확보되면, 정보시스템 이용자들은 거래가 원활하게 수행되고 있는지를 확인할 수 있게 되고, 거래 과정과 결과를 자신이 의도한 대로 통제할 수 있게 되기 때문에, 이용자들의 거래 위험을 감소시킬 수 있다. "구조기반 신뢰" 에 대한 연구에 따르면, 정보시스템 이용자들은 자신들이 성공적으로 거래를 할 수 있도록 구조적인 요소를 제공하는 서비스 제공자들을 보다 신뢰하는 속성이 있다. 거래과정과 거래결과를 확인할 수 있는 정보의 투명성은 정보시스템 이용자가 거래를 원활하게 추진할 수 있는 구조적 기반을 제공하므로 서비스 제공자에 대한 신뢰는 증가하게 된다. 거래 위험이 감소하고 신뢰가 증가되면, 이용자들은 제공되는 서비스에 대해 보다 만족하게 되고, 따라서 서비스 제공자에 대해 충성도가 제고되거나 서비스에 대해 지불 의사를 가지게 될 것이다. 본 연구에서는 실험실 실험을 통해 연구 가설 및 연구 모델을 실증적으로 검증하고자 하였다. 실험설계는 과정의 투명성과 결과의 투명성이라는 두 가지 요인에 따라 $2{\times}2$ 집단으로 구성하여 진행하였다. 공인인증서 사용과 관련된 과정의 투명성과 결과 피드백 요소가 현재 온라인 뱅킹 사이트에서 제공되고 있지 않기 때문에 가상의 온라인 뱅킹 사이트를 구축하여 실험을 진행하였다. 총 138개의 유효한 자료를 실험을 통해 수집하였으며 PLS 알고리즘을 활용하여 분석을 진행하였다. 분석 결과, 과정의 투명성은 온라인 뱅킹 거래의 위험을 줄이고 온라인 뱅킹 사이트에 대한 신뢰를 증가시키는 것으로 나타났다. 결과 피드백은 온라인 뱅킹 사이트에 대한 신뢰를 증가시키는 것으로 나타났다. 이렇게 증가된 신뢰와 감소된 거래위험은 서비스 만족도를 증가시킴으로써 온라인 뱅킹 서비스 이용 고객의 서비스에 대한 지불의도와 온라인 뱅킹 사이트에 대한 충성도를 증가시키는 것으로 조사되었다. 본 연구에서는 온라인 뱅킹 서비스의 보안이라는 주제에 대해 정보의 투명성이 보안에 미치는 영향을 실증자료를 통해 분석함으로써 온라인 보안 메커니즘 연구의 범위를 확대하였을 뿐만 아니라 실제 구현이 가능한 보안 메커니즘에 대한 효과를 검증함으로써 실무적 측면에서의 동헌도가 있다고 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.